4.3 The Normal Distribution

DEFINITION

A continuous rv X is said to have a normal distribution with parameters μ and σ (or μ and σ^{2}), where $-\infty<\mu<\infty$ and $0<\sigma$, if the pdf of X is

$$
\begin{equation*}
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \quad-\infty<x<\infty \tag{4.3}
\end{equation*}
$$

$\mathrm{e} \approx 2.71828, \quad \pi \approx 3.14159$.

```
Notation: N
```


Figure 4.13 Normal density curves

Theorem: If X has normal distribution with parameters μ and σ then

$$
\begin{aligned}
& E(X)=\mu \\
& V(X)=\sigma^{2}
\end{aligned}
$$

COMPUTATION
TI-83: TI-83 has normal probilities and percentiles programed in DISTR menu ([2 ${ }^{\mathrm{ND}]}$ [VARS])
$P(a \leq X \leq b)=$ normalcdf($a, b, \mu, \sigma) \quad\left(\right.$ use $a=-10^{\wedge} 99$ if $a=-\infty$, and $b=10^{\wedge} 99$ if $\left.b=\infty\right)$
100p\%-th percentile $=$ invNorm $(\mathbf{p}, \mu, \sigma)$
OR Table A3

The normal distribution with parameter values $\mu=0$ and $\sigma=1$ is called the standard normal distribution. A random variable having a standard normal distribution is called a standard normal random variable and will be denoted by Z. The pdf of Z is

$$
f(z ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \quad-\infty<z<\infty
$$

The graph of $f(z ; 0,1)$ is called the standard normal (or z) curve. Its inflection points are at 1 and -1 . The cdf of Z is $P(Z \leq z)=\int_{-\infty}^{z} f(y ; 0,1) d y$, which we will denote by $\Phi(z)$.

Notation: $\quad \mathrm{N}(0,1)$

Figure 4.14 Standard normal cumulative areas tabulated in Appendix Table A. 3

Example 4.13 Let's determine the following standard normal probabilities: (a) $P(Z \leq 1.25)$, (b) $P(Z>1.25)$, (c) $P(Z \leq-1.25)$, and (d) $P(-.38 \leq Z \leq 1.25)$.

Shaded area $=\Phi(1.25)$

(a) $P(Z \leq 1.25)=\Phi(1.25)=0.8944$
(b) $P(Z>1.25)=1-\Phi(1.25)=0.1056$
(c) $P(Z \leq-1.25)=\Phi(-1.25)=0.1056$
(d) $\mathrm{P}(-.38 \leq \mathrm{Z} \leq 1.25)=\Phi(1.25)-\Phi(-.38)$

(a)

(b)

Finding percentiles of the Standard Normal Distribution:

Example 2. Find the $99^{\text {th }}$ percentile and the $1^{\text {st }}$ percentile of the standard normal distribution.

Answer: $99^{\text {th }}$ percentile $\approx 2.33,1^{\text {st }}$ percentile ≈-2.33
z_{α} Value (critical value): z_{α} is the value of Z for which the area under the z-curve and to the right of z_{α} is α

$z_{\alpha}=(1-\alpha) 100 \%$ percentile of the standard normal curve
Table 4.1 Standard Normal Percentiles and Critical Values

Percentile	90	95	97.5	99	99.5	99.9	99.95
α (tail area)	.1	.05	.025	.01	.005	.001	.0005
$z_{\alpha}=100(1-\alpha)$ th	1.28	1.645	1.96	2.33	2.58	3.08	3.27
\quadpercentile							

Example 3. Find $z_{0.05}$. Answer: $z_{0.05}=95^{\text {th }}$ percentile of standardnormal distribution $=1.645$

Relation between nonstandard and standard normal distributions:

PROPOSITION
If X has a normal distribution with mean μ and standard deviation σ, then

$$
Z=\frac{X-\mu}{\sigma}
$$

has a standard normal distribution. Thus

$$
\begin{gathered}
P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\
P(X \leq a)=\Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \geq b)=1-\Phi\left(\frac{b-\mu}{\sigma}\right)
\end{gathered}
$$

Example 4.16 Suppose that X is normally distributed with mean $\mu=1.25$ and standard deviation σ $=0.46$, that is X is $\mathrm{N}(1.25, .2116)$.

1. Find the probability $P(1.00 \leq X \leq 1.75)$.

$$
\begin{aligned}
P(1.00 \leq X \leq 1.75) & =P\left(\frac{1.00-1.25}{.46} \leq Z \leq \frac{1.75-1.25}{.46}\right) \\
& =P(-.54 \leq Z \leq 1.09)=\Phi(1.09)-\Phi(-.54) \\
& =.8621-.2946=.5675
\end{aligned}
$$

2. Find the $90^{\text {th }}$ percentile $\eta(.90)$ of X, that is find a number c such that $P(X \leq c)=0.90$.

The $90^{\text {th }}$ percentile of Z is 1.28 , which means that

$$
P(Z \leq 1.28)=0.90
$$

Since $Z=\frac{X-1.25}{.46}$, solving inequality $\frac{X-1.25}{.46} \leq 1.28$ for X we obtain that $P(X \leq 1.28 \times$ $0.46+1.25)=0.90$. Hence the $90^{\text {th }}$ percentile c of X is $c=1.28 \times 0.46+1.25=1.84$

TI-83:

1. $P(1.00 \leq X \leq 1.75)=\operatorname{normalcdf}(1,1.75,1.25,0.46)=0.5681$
2. $90^{\text {th }}$ percentile of $X=\operatorname{invNorm}(.9,1.25,0.46)=1.84$

Approximating Binomial Distribution:

For large n the cdf of binomial distribution with parameters n and p can be approximated by normal probabilities with $\mu=n p$ and $\sigma^{2}=n p(1-p)$

Binomial probability histogram for $n=20, p=.6$ with normal approximation
PROPOSITION
Let X be a binomial ry based on n trials with success probability p. Then if the binomial probability histogram is not too skewed, X has approximately a normal distribution with $\mu=n p$ and $\sigma=\sqrt{n p q}$. In particular, for $x=$ a possible value of X,

$$
\begin{aligned}
P(X \leq x) & =B(x, n, p) \approx\binom{\text { area under the normal curve }}{\text { to the left of } x+.5} \\
& =P(\tilde{X} \leq x+0.5), \quad \text { where } \tilde{X} \text { is } N(n p, n p(1-p))
\end{aligned}
$$

In practice, the approximation is adequate provided that both $n p \geq 10$ and $n q \geq 10$, since there is then enough symmetry in the underlying binomial distribution.

EXERCISES 4.3

Verify the Empirical Rule (below).

If the population distribution of a variable is (approximately) normal, then

1. Roughly 68% of the values are within 1 SD of the mean.
2. Roughly 95% of the values are within 2 SDs of the mean.
3. Roughly 99.7% of the values are within 3 SDs of the mean.
here $\mathrm{SD}=$ standard deviation $=\sigma$
4. Suppose the diameter at breast height (in.) of trees of a certain type is normally distributed with $\mu=8.8$ and $\sigma=2.8$, as suggested in the article "Simulating a Harvester-Forwarder Softwood Thinning" (Forest Products J., May 1997: 36-41).
a. What is the probability that the diameter of a randomly selected tree will be at least 10 in.? Will exceed 10 in.?
b. What is the probability that the diameter of a randomly selected tree will exceed 20 in.?
c. What is the probability that the diameter of a randomly selected tree will be between 5 and 10 in.?
d. What value c is such that the interval $(8.8-c, 8.8+c)$ includes 98% of all diameter values?
e. If four trees are independently selected, what is the probability that at least one has a diameter exceeding 10 in .?

Answers: $0.3341,0.0000316,0.5785,6.52,0.8034$
40. The article "Monte Carlo Simulation-Tool for Better Understanding of LRFD" (J. Structural Engr., 1993: 1586-1599) suggests that yield strength (ksi) for A36 grade steel is normally distributed with $\mu=43$ and $\sigma=4.5$.
a. What is the probability that yield strength is at most 40 ?

Greater than 60 ?
b. What yield strength value separates the strongest 75% from the others?

Answers: a. $0.2525,0.00008$; b. 39.96
54. Suppose that 10% of all steel shafts produced by a certain process are nonconforming but can be reworked (rather than having to be scrapped). Consider a random sample of 200 shafts, and let X denote the number among these that are nonconforming and can be reworked. What is the (approximate) probability that X is
a. At most 30 ?
b. Less than 30 ?
c. Between 15 and 25 (inclusive)?

Answers: 0.993, 0.987, 0.792

