
Robotics and Autonomous Systems 57 (2009) 469–483
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A survey of robot learning from demonstration
Brenna D. Argall a,∗, Sonia Chernova b, Manuela Veloso b, Brett Browning a
a Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

a r t i c l e i n f o

Article history:
Received 23 May 2008
Received in revised form
15 October 2008
Accepted 25 October 2008
Available online 25 November 2008

Keywords:
Learning from demonstration
Robotics
Machine learning
Autonomous systems

a b s t r a c t

Wepresent a comprehensive survey of robot Learning fromDemonstration (LfD), a technique that develops
policies from example state to action mappings. We introduce the LfD design choices in terms of
demonstrator, problem space, policy derivation and performance, and contribute the foundations for a
structure in which to categorize LfD research. Specifically, we analyze and categorize the multiple ways
inwhich examples are gathered, ranging from teleoperation to imitation, aswell as the various techniques
for policy derivation, including matching functions, dynamics models and plans. To conclude we discuss
LfD limitations and related promising areas for future research.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The problem of learning a mapping between world state
and actions lies at the heart of many robotics applications. This
mapping, also called a policy, enables a robot to select an action
based upon its current world state. The development of policies
by hand is often very challenging and as a result machine learning
techniques have been applied to policy development. In this
survey, we examine a particular approach to policy learning,
Learning from Demonstration (LfD).
Within LfD, a policy is learned from examples, or demonstra-

tions, provided by a teacher. We define examples as sequences of
state–action pairs that are recorded during the teacher’s demon-
stration of the desired robot behavior. LfD algorithms utilize this
dataset of examples to derive a policy that reproduces the demon-
strated behavior. This approach to obtaining a policy is in contrast
to other techniques in which a policy is learned from experience,
for example building a policy based on data acquired through ex-
ploration, as in Reinforcement Learning [1]. We note that a policy
derived under LfD is necessarily defined only in those states en-
countered, and for those corresponding actions taken, during the
example executions.
In this article, we present a survey of recent work within the

LfD community, focusing specifically on robotic applications. We
segment the LfD learning problem into two fundamental phases:
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gathering the examples, and deriving a policy from such examples.
Based on our identification of the defining features of these tech-
niques, we contribute a comprehensive survey and categorization
of existing LfD approaches. Though LfD has been applied to a va-
riety of robotics problems, to our knowledge there exists no es-
tablished structure for concretely placing work within the larger
community. In general, approaches are appropriately contrasted
to similar or seminal research, but their relation to the remain-
der of the field lies largely unaddressed. Establishing these rela-
tions is further complicated bydealingwith realworld robotic plat-
forms, for which the physical details between implementations
may vary greatly and yet employ fundamentally identical learning
techniques, or vice versa. A categorical structure therefore aids in
comparative assessments among applications, as well as in iden-
tifying open areas for future research. In contributing our catego-
rization of current approaches, we aim to lay the foundations for
such a structure.
For the remainder of this section we motivate the application

of LfD to robotics, and present a formal definition of the LfD
problem. Section 2 presents the key design decisions for an
LfD system. Methods for gathering demonstration examples
are the focus of Section 3, where the various approaches to
teacher demonstration and data recording are discussed. Section 4
examines the core techniques for policy derivation within LfD,
followed in Section 5 bymethods for improving robot performance
beyond the capabilities of the teacher examples. To conclude, we
identify and discuss open areas of research for future work in
Section 6 and summarize the article with Section 7.
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1.1. Support for demonstration learning

The presence of robots within society is becoming ever more
prevalent. Whether an exploration rover in space, robot soccer
or a recreational robot for the home, successful autonomous
robot operation requires robust control algorithms. Non-robotics-
experts may be increasingly presented with opportunities to
interact with robots, and it is reasonable to expect that they have
ideas about what a robot should do, and therefore what sort
of behaviors these control algorithms should produce. A natural,
and practical, extension of having this knowledge is to actually
develop the desired control algorithm. Currently, however, policy
development is a complex process restricted to experts within the
field.
Traditional approaches to robot control model domain dynam-

ics and derivemathematically-based policies. Though theoretically
well-founded, these approaches depend heavily upon the accuracy
of the world model. Not only does this model require considerable
expertise to develop, but approximations such as linearization are
often introduced for computational tractability, thereby degrading
performance. Other approaches, such as Reinforcement Learning,
guide policy learning by providing reward feedback about the de-
sirability of visiting particular states. To define a function to pro-
vide the reward, however, is known to be difficult and requires
considerable expertise to address. Furthermore, building the pol-
icy requires gathering information by visiting states to receive re-
wards, which is non-trivial for a robot learner executing actual ac-
tions in the real world.
Considering these challenges, LfD has many attractive points

for both learner and teacher. LfD formulations typically do not
require expert knowledge of the domain dynamics, which removes
performance brittleness resulting from model simplifications. The
absence of this expert domain knowledge requirement also opens
policy development to non-robotics-experts, satisfying a need that
increases as robots become more commonplace. Furthermore,
demonstration has the attractive feature of being an intuitive
medium for communication from humans, who already use
demonstration to teach other humans. Demonstration also has the
practical feature of focusing the dataset to areas of the state–space
actually encountered during task execution.

1.2. Problem statement

LfD can be seen as a subset of Supervised Learning. In Supervised
Learning the agent is presented with labeled training data and
learns an approximation to the function which produced the
data. Within LfD, this training dataset is composed of example
executions of the task by a demonstration teacher (Fig. 1, top).
We formally construct the LfD problem as follows. The world

consists of states S and actions A, with the mapping between
states by way of actions being defined by a probabilistic transition
function T (s′|s, a) : S × A× S → [0, 1]. We assume that the state
is not fully observable. The learner instead has access to observed
state Z , through the mapping M : S → Z . A policy π : Z → A
selects actions based on observations of the world state. A single
cycle of policy execution at time t is shown in Fig. 1 (bottom).
The set A ranges from containing low-level motions to high-

level behaviors. For some simulated world applications, state
may be fully transparent, in which case M = I , the identity
mapping. For all other applications state is not fully transparent
and must be observed, for example through sensors in the real
world. For succinctness, throughout the text we will use ‘‘state’’
interchangeably with ‘‘observed state.’’ It should be assumed,
however, that state is always the observed state, unless explicitly
noted otherwise. This assumption will be reinforced by use of the
Z notation throughout the text.
Throughout the teacher execution, states and selected actions
are recorded. We represent a demonstration dj ∈ D formally as kj
pairs of observations and actions: dj = {(z ij , a

i
j)}, z

i
j ∈ Z, a

i
j ∈

A, i = 0 · · · kj. These demonstrations set LfD apart from other
learning approaches. The setDof the demonstrations ismade avail-
able to the learner. The policy derived from this dataset enables the
learner to select an action based on the current state.

1.3. Terminology and context

Before continuing, we pause to place the intents of this survey
within the context of previous LfD literature. The aim of this survey
is to review the broad topic of LfD, to provide a categorization
that highlights differences between approaches, and to identify
research areas within LfD that have not yet been explored.
We begin with a comment on terminology. Demonstration-

based learning techniques are described by a variety of terms
within the published literature, including Learning by Demonstra-
tion (LbD), Learning from Demonstration (LfD), Programming by
Demonstration (PbD), Learning by Experienced Demonstrations,
Assembly Plan from Observation, Learning by Showing, Learning
by Watching, Learning from Observation, behavioral cloning, imi-
tation and mimicry. While the definitions for some of these terms,
such as imitation, have been loosely borrowed from other sciences,
the overall use of these terms is often inconsistent or contradictory
across articles.
Within this article, we refer to the general category of algo-

rithms in which a policy is derived based on demonstrated data
as Learning from Demonstration (LfD). Within this category, we fur-
ther distinguish between approaches by their various characteris-
tics, as outlined in Section 2, such as the source of the demonstra-
tions and the learning techniques applied. Subsequent sections in-
troduce terms used to characterize algorithmic differences. Due to
the already contradictory use of terms in the existing literature, our
definitions will not always agree with those of other publications.
Our intent, however, is not for others in the field to adopt the ter-
minology presented here, but rather to provide a consistent set of
definitions that highlight distinctions between techniques.
Regarding a categorization for approaches, we note that many

legitimate criteria could be used to subdivide LfD research.
For example, one proposed categorization considers the broad
spectrum of who, what, when and how to imitate, or subsets
thereof [2,3]. Our review aims to focus on the specifics of
implementation. We therefore categorize approaches according
to the computational formulations and techniques required to
implement an LfD system.
To conclude, readers may also find useful other related surveys

of the LfD research area. In particular, the book Imitation in

Fig. 1. Control policy derivation and execution.
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Animals and Artifacts [4] provides an interdisciplinary overview
of research in imitation learning, presenting leading work from
neuroscience, psychology and linguistics as well as computer
science. A narrower focus is presented in the chapter ‘‘Robot
Programming by Demonstration’’ [2] within the book Handbook
of Robotics. This work particularly highlights techniques which
may augment or combine with traditional LfD, such as giving the
teacher an active role during learning. By contrast, our focus is to
provide a categorical structure for LfD approaches, in addition to
presenting the specifics of implementation. We do refer the reader
to this chapter for a more comprehensive historical overview of
LfD, as the scope of our survey is restricted to recently published
literature. Additional reviews that cover specific sub-areas of LfD
research in detail are highlighted throughout the article.

2. Design choices

There are certain aspects of LfD which are common among all
applications to date. One is the fact that a teacher demonstrates
execution of a desired behavior. Another is that the learner is
provided with a set of these demonstrations, and from them
derives a policy able to reproduce the demonstrated behavior.
However, the developer still faces many design choices when

developing a new LfD system. Some of these decisions, such
as the choice of a discrete or continuous action representation,
may be determined by the domain. Other design choices may
be up to the preference of the developer. As we discuss in the
later sections, these design decisions strongly influence how the
learning problem is structured and solved. In this section we
highlight those decisions that are the most significant to make.
To illustrate these choices, we pair the presentation with a run-

ning pick and place example inwhich a robotmustmove a box from
a table to a chair. To do so, the object must be (1) picked up, (2)
relocated and (3) put down. We present alternate representations
and/or learning methods for this task, to illustrate how these par-
ticular choices influence task formalization and learning.

2.1. Demonstration approach

Within the context of gathering teacher demonstrations, two
key decisions must be made: the choice of demonstrator, and the
choice of demonstration technique. We discuss various choices for
each of these decisions below. Note that these decisions are at
times affected by factors such as the complexity of the robot and
task. For example, teleoperation is rarely used with high degree
of freedom humanoids, since their complex motions are typically
difficult to control via joystick.

2.1.1. The choice of demonstrator
Most LfD work to date has made use of human demonstrators,

although some techniques have also examined the use of robotic
teachers, hand-written control policies and simulated planners.
The choice of demonstrator further breaks down into the
subcategories of (i) who controls the demonstration and (ii) who
executes the demonstration.
For example, consider a robot learning to move a box, as

described above. One demonstration approach could have a robotic
teacher pick up and relocate the box using its own body. In this
case a robot teacher controls the demonstration, and its teacher
body executes the demonstration. An alternate approach could
have a human teacher teleoperate the robot learner through the
task of picking up and relocating the box. In this case a human
teacher controls the demonstration, and the learner body executes
the demonstration. The choice of demonstrator has a significant
impact on the type of learning algorithms that can be applied.
As we discuss in Section 3, the similarity between the state and
action spaces of the teacher and learner determines the kinds of
algorithms that may be required to process the data.
2.1.2. Demonstration technique
The choice of demonstration technique refers to the strategy

for providing data to the learner. One option is to perform
batch learning, in which case the policy is learned only once
all data has been gathered. Alternatively, interactive approaches
allow the policy to be updated incrementally as training data
becomes available, possibly provided in response to current
policy performance. Examples of both approaches are highlighted
throughout the article.

2.2. Problem space continuity

The question of continuity plays a prominent role within
the context of state and action representation, and many valid
representations frequently exist for the same domain. Within our
robot boxmoving example, one option could be to discretize state,
such that the environment is represented by Boolean features such
as box on table and box held by robot. Alternatively, a continuous
state representation could beused inwhich the state is represented
by the 3D positions of the robot’s end effector and the box. Similar
discrete or continuous representations could be chosen for the
robot’s actions.
In designing a domain, the continuity of the problem space

may be determined by many factors, such as the desired learned
behavior, the set of available actions and whether the world
is simulated or real. As discussed in Section 4, the question
of continuity heavily influences how suitable the various policy
derivation techniques are for addressing a given problem.
Additionally, we note that LfD can be applied at a variety

of action control levels, depending on the problem formulation.
We roughly group actions into three control levels: low-level
actions for motion control, basic high-level actions (often called
action primitives) and complex behavioral actions for high-level
control. Note that this is a somewhat different consideration to
action–space continuity. For example, a low-level motion could be
formulated as discrete or continuous, and so this action level can
map to either space. As a general technique, LfD can be applied at
any of these action levels. Most important in the context of policy
derivation, however, is whether actions are continuous or discrete,
and not their control level. For the remainder of the article, we
distinguish between representations based on continuity only.

2.3. Policy derivation and performance

In selecting an algorithm for generating a policy, we consider
two key decisions: the general technique used to derive the policy,
andwhether performance can improve beyond the teacher’s demon-
strations. These decisions are influenced by action-continuity, as
described in the previous section, which is in turn determined both
by task and robot capabilities.

2.3.1. Policy derivation technique
As summarized in Fig. 2, research within LfD has seen the

development of three core approaches to policy derivation from
demonstration data, which we define as mapping function, system
model, and plans:

• Mapping function (Section 4.1): Demonstration data is used to
directly approximate the underlying functionmapping from the
robot’s state observations to actions (f () : Z → A).
• System model (Section 4.2): Demonstration data is used to
determine a model of the world dynamics (T (s′|s, a)), and
possibly a reward function (R(s)). A policy is then derived using
this information.
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Fig. 2. Policy derivation using the generalization approach of determining (a) an approximation to the state→ actionmapping function, (b) a dynamics model of the system
and (c) a plan of sequenced actions.
• Plans (Section 4.3) : Demonstration data, and often additional
user intention information, is used to learn rules that as-
sociate a set of pre- and post-conditions with each action
(L({preC, postC}|a)), and possibly a sparsified state dynamics
model (T (s′|s, a)). A sequence of actions is then planned using
this information.

Returning again to our example, suppose a mapping function
approach is used to derive the policy. A function f () : Z → A is
learned that maps the observed state of the world, for example
the 3D location of the robot’s end effector, to an action which
guides the learner towards the goal state, for example the desired
end effector motor speed. Consider instead using a system model
approach. Here a state transition model T (s′|s, a) is learned, for
example that taking the pick up action when in state box on table
results in state box held by robot. Using this model, the derived
policy indicates the best action to take when in a given state, to
guide the robot towards the goal state. Finally, consider using a
planning approach. The pre- and post-conditions of executing an
action L({preC, postC}|a) are learned from the demonstrations. For
example, the pick up action requires the box on table pre-condition,
and results in the box held by robot post-condition. A planner uses
this learned information to produce a sequence of actions that ends
with the robot in the goal state. Each of the three approaches are
discussed in detail within Section 4.

2.3.2. Dataset limitations
Training examples obtained from demonstration are inherently

limited by the performance of the teacher. In many domains,
it is possible that this teacher performance is suboptimal when
compared with the abilities of the learner. For example, a human
teacher may not be physically able to execute actions as quickly
or accurately as a robot. Since the learner derives its policy from
these examples, the performance of this policy is therefore also
limited by the teacher’s abilities. Many LfD learning systems,
however, have been augmented to enable learner performance
to improve beyond what was provided in the demonstration
dataset. Examples include the incorporation of teacher advice
or Reinforcement Learning techniques. These approaches are
discussed in depth within Section 5.

3. Gathering examples: How the dataset is built

In this section, we discuss various techniques for executing
and recording demonstrations. The LfD dataset is composed of
state–action pairs recorded during teacher executions of the
desired behavior. Exactly how they are recorded, and what the
teacher uses as a platform for the execution, varies greatly across
approaches. Examples range from sensors on the robot learner
recording its own actions as it is passively teleoperated by the
teacher, to a camera recording a human teacher as she executes
the behavior with her own body.
For LfD to be successful, the states and actions in the learning

dataset must be usable by the student. In themost straightforward
setup, the states and actions of the teacher executionsmap directly
to the learner. In reality, however, a direct mapping will often not
be possible, as the learner and teacher will likely differ in sensing
ormechanics. For example, a robot learner’s camerawill not detect
state changes in the same manner as a human teacher’s eyes, nor
will its gripper apply force in the same manner as a human hand.
The challenges which arise from these differences are referred to
broadly as Correspondence Issues [5].

3.1. Correspondence

The issue of correspondence deals with the identification of
a mapping between the teacher and the learner that allows the
transfer of information from one to the other. In this survey, we
define correspondence with respect to two mappings, shown in
Fig. 3: the record mapping, and the embodiment mapping.

• The Record Mapping (Teacher Execution → Recorded Execu-
tion) refers to whether the exact states/actions experienced by
the teacher during the demonstration execution are recorded
within the dataset.
• The Embodiment Mapping (Recorded Execution → Learner)
refers towhether the states/actions recordedwithin the dataset
are exactly those that the learner would observe/execute.
When the record mapping is the identity I(z, a), the states/

actions experienced by the teacher during execution are directly
recorded in the dataset. Otherwise this teacher information is
encoded according to some record mapping function gR(z, a) 6=
I(z, a), and this encoded information is recorded within the
dataset. Similarly, when the embodiment mapping is the identity
I(z, a), the states/actions in the dataset map directly to the
learner. Otherwise the embodiment mapping consists of some
function gE(z, a) 6= I(z, a). For any given learning system, it
is possible to have neither, either or both of the record and
embodiment mappings be the identity. Note that the mappings
do not change the content of the demonstration data, but only
the reference frame within which it is represented. Fig. 4 shows
the intersection of these configurations, which we discuss further
within subsequent sections.
The embodiment mapping is particularly important when con-

sidering real robots, compared with simulated agents. Since actual
robots execute real actions within a physical environment, provid-
ing them with a demonstration involves a physical execution by
the teacher. Learning within this setting depends heavily upon an
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Fig. 3. Mapping a teacher execution to the learner.
Fig. 4. Intersection of the record and embodiment mappings. The left and
right columns represent an identity (Demonstration) and non-identity (Imitation)
embodiment mapping, respectively. Each column is then subdivided by an identity
(top) or non-identity (bottom) record mapping. Typical approaches to providing
data are listed within the quadrants.

accurate mapping between the recorded dataset and the learner’s
abilities.
Recalling again our box relocation example, consider a human

teacher using her own body to demonstrate moving the box, and
that a camera records the demonstration. Let the teacher actions,
AT , be represented as human joint angles, and the learner actions,
AL, be represented as robot joint angles. In this context, the robot
observes the teacher’s demonstration of the task through the
camera images. The teacher’s exact actions are unknown to the
robot; instead, this information must be extracted from the image
data. This is an example of a gR(z, a) 6= I(z, a) record mapping
AT → D. Furthermore, the physical embodiment of the teacher
is different from that of the robot and his actions (AT ) are therefore
not the same as those of the robot (AL). Therefore in order to make
the demonstration data meaningful for the robot, a mapping D→
AL must be applied to convert the demonstration into the robot’s
frame of reference. This is one example of a gE(z, a) 6= I(z, a)
embodiment mapping.
The categorization of LfD data sources that we present in

this article groups approaches according to the absence or
presence of the record and embodiment mappings. We select this
categorization to highlight the levels at which correspondence
plays a role in demonstration learning. Within a given learning
approach, the inclusion of each additional mapping introduces a
potential injection point for correspondence difficulties; in short,
the more mappings, the more difficult it is to recognize and
reproduce the teacher’s behavior. However, mappings also reduce
constraints on the teacher and increase the generality of the
demonstration technique.
In our categorization, we first split LfD data acquisition

approaches into two categories based on the embodiment
mapping, and thus by execution platform:

• Demonstration: There is no embodiment mapping, because
demonstration is performed on the actual robot learner (or a
physically identical platform). Thus gE(z, a) ≡ I(z, a).
• Imitation: There exists an embodiment mapping, because
demonstration is performed on a platform which is not the
robot learner (or a not physically identical platform). Thus
gE(z, a) 6= I(z, a).

We then further distinguish approaches within each of these
categories according to record mapping, relating to how the
demonstration is recorded. Fig. 5 introduces our full categorization
of the various approaches for building the demonstration dataset.
We structure our discussion of data acquisition in subsequent
sections according to this categorization.

3.2. Demonstration

When teacher executions are demonstrated, by our definition
there exists no embodiment mapping issue between the teacher
and learner. This situation is presented in the left column of
Fig. 4. There may exist a non-direct record mapping, however, for
state and/or actions, if the states experienced (actions taken) by
the demonstrator are not recorded directly, and must instead be
inferred from the data. Based on this distinction, we identify two
common approaches for providing demonstration data to the robot
learner as:

• Teleoperation (Section 3.2.1): A demonstration technique in
which the teacher operates the robot learner platform and the
robot’s sensors record the execution. The record mapping is
direct; thus gR(z, a) ≡ I(z, a).
• Shadowing (Section 3.2.2): A demonstration technique inwhich
the robot learner records the execution using its own sensors
while attempting to match or mimic the teacher motion as
the teacher executes the task. There exists a non-direct record
mapping; thus gR(z, a) 6= I(z, a).

Again, for both teleoperation and shadowing the robot records
from its own sensors as its body executes the behavior, and so the
embodiment mapping is direct, gE(z, a) ≡ I(z, a).
The record mapping distinction plays an important role in

the application and development of demonstration algorithms.
As described below, teleoperation is not suitable for all learning
platforms, while shadowing techniques require an additional
processing component to enable the learner to mimic the teacher.
In the following subsections we discuss various works that utilize
these demonstration techniques.

3.2.1. Teleoperation
During teleoperation, a robot is operated by the teacher

while recording from its own sensors. Since the robot directly
records the states/actions experienced during the execution, the
record mapping is direct and gR(z, a) ≡ I(z, a). Teleoperation
provides the most direct method for information transfer within
demonstration learning. However, teleoperation requires that
operating the robot be manageable, and as a result not all systems
are suitable for this technique. For example low-level motion
demonstrations are difficult on systems with complex motor
control, such as high degree of freedom humanoids.
Demonstrations recorded through human teleoperation via a

joystick are used in a variety of applications, including flying a
robotic helicopter [6], robot kickingmotions [7], object grasping [8,
9], robotic arm assembly tasks [10] and obstacle avoidance and
navigation [11,12]. Teleoperation is also applied to a wide variety
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Fig. 5. Categorization of approaches to building the demonstration dataset.
of simulated domains, ranging from static mazes [13,14] to
dynamic driving [15,16] and soccer domains [17], and many other
applications.
Human teachers also employ techniques other than direct

joysticking. In kinesthetic teaching, a humanoid robot is not
actively controlled but rather its passive joints are moved through
desired motions [18]. Demonstration may also be performed
through speech dialog, in which the teacher specifically tells the
robot what actions to execute in various states [19–21]. Both
of these techniques might be viewed as variants on traditional
teleoperation, or alternatively as a sort of high-level teleoperation.
In place of a human teacher, hand-written controllers are also used
to teleoperate robots [22–24,12].
We note that demonstration data recorded using real robots

frequently does not represent the full observation state of the
teacher. This occurs if, while executing, the teacher employs extra
sensors that are not recorded. For example, if the teacher observes
parts of the world that are inaccessible from the robot’s cameras
(e.g., behind the robot, if its cameras are forward-facing), then
state, as observed by the teacher, differs from what is actually
recorded as data. A small number ofworks do address this problem.
For example, in Grudic and Lawrence [25] a vision-based robot
is teleoperated while the teacher looks exclusively at a screen
displaying the robot’s camera output.

3.2.2. Shadowing
During shadowing, the robot platform mimics the teacher’s

demonstrated motions while recording from its own sensors.
The record mapping is not direct, gR(z, a) 6= I(z, a), because
the states/actions of the true demonstration execution are not
recorded. Rather, the learner records its ownmimicking execution,
and so the teacher’s states/actions are indirectly encoded within
the dataset. In comparison to teleoperation, shadowing requires
an extra algorithmic component which enables the robot to track
and actively shadow (rather than passively be teleoperated by) the
teacher.
Navigational tasks learned from shadowing have a robot follow

an identical-platform robot teacher through a maze [26], follow
a human teacher past sequences of colored markers [27] and
mimic routes determined from observations of human teacher
executions [28]. A humanoid learns arm gestures, as well as the
rules of a turn-taking gesture game, by mimicking the motions of
a human demonstrator [29].

3.3. Imitation

As previously defined, embodiment issues do exist between
the teacher and learner for imitation approaches. This situation is
presented in the right column of Fig. 4, indicating the presence of a
non-identity embodiment mapping gE(z, a) 6= I(z, a). Within this
setting, we further divide approaches for providing imitation data
by whether the record mapping is the identity or not:

• Sensors on teacher (Section 3.3.1): An imitation technique in
which sensors located on the executing body are used to record
the teacher execution. The record mapping is direct; thus
gR(z, a) ≡ I(z, a).
• External observation (Section 3.3.2): An imitation technique in
which sensors external to the executing body are used to record
the execution. These sensors may or may not be located on the
robot learner. There exists a non-direct record mapping; thus
gR(z, a) 6= I(z, a).

The record mapping distinction again plays an important
role in the application and development of imitation algorithms,
just as it did with demonstration approaches. The sensors on
teacher approach provides precise measurements, but requires a
lot of overhead in the way of specialized sensors and customized
surroundings. By contrast, external observation is a more general
method, but also provides less reliable measurements. In the
following subsections, we discuss these imitation techniques and
the various works that utilize them. Additionally, we point the
reader to a review that examines the problems of correspondence
and knowing what to imitate [30].

3.3.1. Sensors on teacher
The sensors-on-teacher approach utilizes recording sensors

located directly on the executing platform. This means no record
mapping, and so gR(z, a) ≡ I(z, a), which alleviates one
potential source for correspondence difficulties. The strength of
this technique is that the teacher provides precise measurements
of the example execution. However, the overhead attached to
the specialized sensors, such as human-wearable sensor-suits, or
customized surroundings, such as rooms outfitted with cameras,
is non-trivial and limits the applicability settings of this technique.
Human teachers commonly use their own bodies to perform

example executions bywearing sensors able to record the person’s
state and actions. This is especially true when working with
humanoid or anthropomorphic robots, since the body of the robot
resembles that of a human. The recorded joint angles of a human
teach drumming patterns to a 30-DoF humanoid [31], and in later
work walking patterns as well [32]. A humanoid learns referee
signals by pairing kinesthetic teachings (3.2.1)with human teacher
executions recorded via wearable motion sensors [33]. Another
approachhas a humanwearing sensors control a simulated human,
which maps to a simulated robot and then to a real robot arm [34].
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Fig. 6. Categorization of approaches to learning a policy from demonstration data.
3.3.2. External observation
Imitation performed through external observation relies on

data recorded by sensors located externally to the executing
platform, meaning that a record mapping exists, and gR(z, a) 6=
I(z, a). Since the robot does not directly record the actual
states/actions experienced by the teacher during the execution,
they must be inferred, introducing a new source of uncertainty
for the learner. Some LfD implementations first extract the teacher
states/actions from this recorded data, and thenmap the extracted
states/actions to the learner. Othersmap the recorded data directly
to the learner, without ever explicitly extracting the states/actions
of the teacher. Compared to the sensors-on-teacher approach, the
data recorded under this technique is less precise and less reliable.
The method, however, is more general and is not limited by the
overhead of specialized sensors and settings.
An early seminal work has a robotic arm learn pole balancing

via stereo-vision and human demonstration [35]. Unlike most
other approaches in this section, human demonstration trains a
non-anthropomorphic robot and data is obtained by tracking the
movement of the pole, not the teacher’s arm itself. Similarly, the
position of the human player’s (teacher’s) puck is tracked when
teaching a 37-DoF humanoid to play air hockey [36]. The robot
learner itself directly observes the teacher executions, as in other
humanoid systems, where cameras are often located directly on
the robot body as a parallel to human eyes.
Typically, the external sensors used to record human teacher

executions are vision-based. Motion capture systems utilizing
visual markers are applied to teaching humanmotion [37–39] and
manipulation tasks [40]. Visual features are tracked in biologically-
inspired frameworks that link perception to abstract knowledge
representation [41] and teach an anthropomorphic hand to play
the game Rock–Paper–Scissors [42]. Background subtraction is
used to extract teacher motion from images [29]. This work takes
a unique approach to building the embodiment mapping gE(z, a);
the correspondence is learned, rather than being hand-engineered,
by having the human teacher shadow the robot’s motions.
A number of systems combine external sensors with other

information sources; in particular, with sensors located directly on
the teacher. A force-sensing glove is combined with vision-based
motion tracking to teach grasping movements [43,44]. Movement,
end effector position, stereo vision, and tactile information teaches
generalized dexterous motor skills to a humanoid robot [45].
The combination of 3D marker data with torso movement and
joint angle data is used for applications on a variety of simulated
and robot humanoid platforms [46]. Other approaches combine
speech with visual observation of human gestures [47] and object
tracking [48], within the larger goal of speech-supported LfD
learning.
Several works also explore learning through external observa-

tion of non-human teachers. A robot learns a manipulation task
through visual observation of an identical robotic teacher [49], and
a simulated agent learns about its own capabilities and unvisited
parts of the state space through observation of other simulated
agents [50]. A generic framework for solving the correspondence
problem between differently embodied robots allows a robotic
agent to learn new behaviors through imitation of another, pos-
sibly physically different, agent [51].

3.4. Other approaches

Within LfD there do exist exceptions to the data source
categorization we have so far presented. These exceptions record
only states during demonstration, without recording actions. For
example, by drawing a path through a 2D representation of
the physical world, high-level path-planning demonstrations are
provided to a rugged outdoor robot [52] and a small quadruped
robot [53,54]. Since the dataset does not provide actions, no
state–action mapping is learned for action selection. Instead,
actions are selected at runtime by employing low-level motion
planners and controllers [52,53], or by providing transitionmodels
T (s′|s, a) [54].

4. Deriving a policy: The source of the state to action mapping

Given a dataset of state–action examples that have been
acquired using one of the methods described in the previous
section, we now discuss methods for deriving a policy using this
data. LfD has seen the development of three core approaches to
deriving policies fromdemonstration data, as summarized in Fig. 2.
Learning a policy can involve simply learning an approximation to
the state-action mapping (mapping function), or learning a model
of the world dynamics and deriving a policy from this information
(system model). Alternately, a sequence of actions can be produced
by a planner after learning a model of action pre- and post-
conditions (plans). Across all of these learning techniques, minimal
parameter tuning and fast learning times requiring few training
examples are desirable.
We introduce a full categorization of the various approaches

to deriving a policy from the demonstration dataset in Fig. 6.
Approaches are initially split between the three core derivation
techniques described above. Further splits, if present, are approach-
specific. We discuss each of these categories in depth in the
following sections. Additionally, we direct the reader to a literature
review that focuses on statistical and mathematical approaches to
deriving motor control policies [3].
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4.1. Mapping function

The mapping function approach to policy learning calculates a
function that approximates the state to action mapping, f () : Z →
A, for the demonstrated behavior (Fig. 2a). The goal of this type
of algorithm is to reproduce the underlying teacher policy, which
is unknown, and to generalize over the set of available training
examples such that valid solutions are also acquired for similar
states that may not have been encountered during demonstration.
The details of function approximation are influenced by many

factors. These include whether the state input and action output
are continuous or discrete, whether the generalization technique
uses the data to approximate a function prior to execution time
or directly at execution time, whether it is feasible or desirable
to keep the entire demonstration dataset around throughout
learning, and whether the algorithm updates online.
In general, mapping approximation techniques fall into two

categories depending on whether the prediction output of the
algorithm is discrete or continuous. Classification techniques
produce discrete output (Section 4.1.1), and regression techniques
produce continuous output (Section 4.1.2). Many techniques for
performing classification and regression have been developed
outside of LfD and we refer the reader to [55] for a full discussion.

4.1.1. Classification
Classification approaches categorize their input into discrete

classes, thereby grouping similar input values together. In the
context of policy learning, the input to the classifier is robot states
and the discrete output classes are robot actions. Below,wepresent
a summary of classificationmethods applied at three action control
levels (basicmotion control, action primitives, complex behaviors),
as defined in Section 2.2. Although a single classification algorithm
can be applied at any level, we distinguish between them to
highlight the generality of this learning technique.
Low-level robot actions include basic commands such as mov-

ing forward or turning. Example applications that learn a mapping
from states to low-level actions include controlling a car within a
simulated driving domain using Gaussian Mixture Models (GMMs)
[56], flying a simulated airplane using decision trees [57] and learn-
ing obstacle avoidance and navigation behaviors using Bayesian
network [11] and k-Nearest Neighbors (kNN) [58] classifiers.
When states are mapped to motion primitives, the primitives

typically are then composed or sequenced together. For example,
Pook and Ballard [8] classify primitive membership using kNN,
and then recognize each primitive within the larger demonstrated
task via Hidden Markov Models (HMMs), to teach a robotic
hand and arm an egg flipping manipulation task. HMMs and
teach a basic assembly task [59], and motor-skill tasks by
identifying and generalizing upon the intentions of the user
[60]. A biologically-inspired framework automatically extracts
primitives from demonstration data, classifies data via vector-
quantization and then composes and/or sequences primitives
within a hierarchical Neural Network [46]. The work is applied to a
variety of test beds, including a 20 DoF simulated humanoid torso,
a 37 DoF avatar (a simulated humanoidwhich responds to external
sensors), Sony AIBO dogs and small differential drive Pioneer
robots. Under this framework, the simulated humanoid torso is
taught a variety of dance, aerobics and athletics motions [61], the
avatar reaching patterns [38] and the Pioneer sequenced location
visiting tasks [62].
Similar approaches have beenused for the classification of high-

level behaviors. The behaviors themselves are generally developed
(by hand or learned) prior to task learning. A similarity measure
on an eigenvector representation recognizes gesture behaviors for
an anthropomorphic hand [44], and within this framework HMMs
classify demonstrations into gestures for a box sorting task with a
Pioneer robot [63]. The Bayesian likelihood method selects actions
for a humanoid robot in a button pressing task [64], and Support
Vector Machines (SVMs) classify behaviors for a robotic ball sorting
task [65].

4.1.2. Regression
Regression approaches map demonstration states to contin-

uous action spaces. Similar to classification, the input to the
regressor are robot states, and the continuous output are robot
actions. Since the continuous-valued output often results from
combiningmultiple demonstration set actions, typically regression
approaches aply to low-level motions and not high-level be-
haviors. A key distinction between methods is whether the
mapping function approximation occurs at run time, or prior to
run time. Below we present a summary of regression techniques
for LfD along a continuum between these two extremes.
At one extreme lies Lazy Learning [66], where function

approximation does not occur until a current observation point in
need of mapping is present. The simplest Lazy Learning technique
is kNN, applied to action selectionwithin roboticmarble-maze [67]
and simulated ball interception [22] domains. More complex
approaches include Locally Weighted Regression (LWR) [68]. One
LWR technique further anchors local functions to the phase
of nonlinear oscillators [69] to produce rhythmic movements,
specifically drumming [70] and walking [32] patterns with a
humanoid robot. While Lazy Learning approaches are fast and
expend no effort approximating the function in areas unvisited
during execution time, they do require keeping around all of the
training data.
In themiddle of the data processing continuum lie techniques in

which the original data is converted to another, possibly sparsified,
representation prior to run time. This converted data is then used
by Lazy Learning techniques at run time. For example, Receptive
FieldWeighted Regression (RFWR) [71] first converts demonstration
data to a Gaussian and local linear model representation. Locally
Weighted Projection Regression (LWPR) [72] extends this approach
to scale with input data dimensionality and redundancy. Both
RFWR and LWPR are able to incrementally update the number of
representative Gaussians as well as regression parameters online.
Successful robotics applications using LWPR include an AIBO robot
performing basic soccer skills [23] and a humanoid playing the
game of air hockey [67]. This latter work actually employsmultiple
techniques, first using kNN to select a behavior class and then
LWPR to generate low-level actions using the demonstration data
within this class. The approaches at this position on the continuum
benefit from not needing to evaluate all of the training data at run
time, but at the cost of extra computation and generalization prior
to execution.
At the opposite extreme lie approaches which form a complete

function approximation prior to execution time. At run time, they
no longer depend on the presence of the underlying data (or
any modified representations thereof). A seminal work uses a
Neural Network (NN) to enable autonomous driving of a van at
speed on a variety of road types [73]. NN techniques also enable
a robot arm to perform a peg in hole task [49], and a set of b-
spline wavelets approximate time-sequenced data for full body
humanoid motion [39]. Also possible are statistical approaches
that represent the demonstration data in a single or mixture
distribution sampled at run time. Demonstration data encoded
as a joint distribution over objects, hand position and hand
orientation is used by a humanoid for grasping novel and known
household objects [47]. Gaussian Mixture Regression (GMR) teaches
a humanoid robot basketball referee signals [33], and Sparse On-
Line Gaussian Processes (SOGP) teaches an AIBO robot to perform
basic soccer skills [74]. The regression techniques in this area all
have the advantage of no training data evaluations at run time,
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but are the most computationally expensive prior to execution.
Additionally, some of the techniques, for example NN, can suffer
from ‘‘forgetting’’ mappings learned earlier in the learning run, a
problemof particular importancewhen updating the policy online.

4.2. System models

The system model approach to LfD policy learning uses a state
transition model of the world, T (s′|s, a), and from this derives a
policy π : Z → A (Fig. 2b). This approach is typically formulated
within the structure of Reinforcement Learning (RL). Demonstration
data, and any additional autonomous exploration the robotmaydo,
generally determines the transition function T (s′|s, a). To derive a
policy from this transition model, a reward function R(s), which
associates reward value r with world state s, is either learned from
demonstrations or defined by the user.
The goal of RL is to maximize cumulative reward over time. The

expected cumulative future reward of the state under the current
policy is represented by further associating each state s with a
value according to the function V (s) (or associating state–action
pair s, a with a Q -value according to the function Q (s, a)). State
values may be represented by the Bellman Equation:

Vπ (s) =
∫
a
π(s, a)

∫
s′
T (s′|s, a)

[
r(s)+ γ Vπ (s′)

]
where Vπ (s) is the value of state s under policy π , and γ
represents a discounting factor on future rewards. How to use
these values to update a policy, and how to update them effectively
online, is a subject of much research outside of LfD. Unlike
function approximation techniques, RL approaches typically do not
generalize state and demonstrations must be provided for every
discrete state. For a full review of RL, we refer the reader to [1].
Reward is themotivation behind state and action selection, and

consequently also guides task execution. Defining a reward func-
tion to accurately capture the desired task behavior, however, is
not always obvious. We therefore categorize LfD implementations
of the system model method by the source of the reward func-
tion. Some take the approach of an engineered reward function, as
seen in classical RL implementations (Section 4.2.1). In other ap-
proaches, the reward function is learned from the demonstration
data (Section 4.2.2).

4.2.1. Engineered reward functions
Withinmost applications of the LfD systemmodel approach, the

user manually defines the reward function. User-defined rewards
tend to be sparse, meaning that the reward value is zero except
for a few states, such as around obstacles or near the goal. Various
demonstration-based techniques therefore have been defined to
aid the robot in locating the rewards and to prevent extensive
periods of blind exploration.
Demonstration may be used to highlight interesting areas of

the state space in domains with sparse rewards, for example
using teleoperation to show the robot the reward states and thus
eliminating long periods of initial exploration that acquire no
reward feedback [75]. Both reward and action demonstrations
influence the performance of the learner in the supervised
actor-critic reinforcement learning algorithm [1]. Applied to a
basic assembly task using a robotic manipulator [24], reward
feedback penalizes negative and reinforces positive behavior,
while action demonstrations highlight recommended actions and
suggest promising directions for state exploration.
A number of algorithms that use hand-engineered rewards

also use interactions with other autonomous agents to enhance
learning. However, these approaches have mostly been studied
in simulation. In the Ask For Help framework [13], RL agents
request advice from other similar agents when all possible actions
in a given state have relatively equal quality estimates. In a
similarly motivated system [76], agents select, exchange and
incorporate advice from other agents, and to combine this advice
with information acquired locally through exploration, to speed
up learning. Novice agents learn in a multiagent system [50] by
passively observing expert agents in the environment, without
explicit teaching.
Finally, real robot applications tend to employ RL in ways not

typically seen in the classical RL policy derivation algorithms,
since even in discrete state–action spaces the cost of visiting
every state, and taking every action from each state, becomes
prohibitively high and further could be physically dangerous. One
approach uses simulation to seed an initial world model, for
example using a planner operating on a simulated version of a
marble maze robot [77]. The opposite approach derives a model
of robot dynamics from demonstration but then uses the model in
simulation, for example to simulate robot statewhen employing RL
to optimize a NN controller for autonomous helicopter flight [78]
and inverted helicopter hovering [6]. The former implementation
additionally pairs the hand-engineered rewardwith a high penalty
for visiting any state not encountered during demonstration, and
the latter additionally makes the explicit assumption of a limited
class of feasible controllers.

4.2.2. Learned reward functions
Defining an effective reward function in real world systems can

be a non-trivial issue. Inverse Reinforcement Learning [79] is one
subfield within RL that addresses this issue by learning, rather than
hand-defining, the reward function.Within LfD, several algorithms
examine learning a reward function from demonstrations, under a
variety of system model frameworks.
A reward function learned by associating greater reward

with states similar to those encountered during demonstration
combines with RL techniques to teach a pendulum swing-up task
to a robotic arm [35]. A modified RL algorithm learns task reward
entirely based on individual rewards interactively provided by a
human user [80]. An additional guidance component also enables
the user to recommend actions for the robot to perform.
Rewarding similarity between teacher demonstrated and

robot-executed trajectories is another approach to learning a
reward function. Example approaches include a Bayesian model
formulation [81], and another that further provides greater reward
to positions close to the goal and thus enables adaptation to
task changes like a new goal location or path obstacles [82]. A
trajectory comparison based on state features first pioneered in
[15] guarantees learning a correct reward function if the feature
counts are properly estimated. This guarantee extends to learning
the correct behavior, and on a real robot system implementation,
in [52]. This work learns a mapping from observation input to
state costs using margin-maximization techniques, and uses the
resulting terrain cost map by a navigational planner to generate
goal-achieving paths as sequences of states. This work extends to
consider the decomposition of task demonstration into hierarchies
for a small legged robot [54,53], and further to resolve ambiguities
in feature counts and reward functions by employing the principle
of maximum entropy [83]. All of these works learn the reward
function R(s) exclusively; however, [84] learns both a reward
function and transition function T (s′|s, a) for acrobatic helicopter
maneuvers.

4.3. Plans

An alternative to mapping states directly to actions is to
represent the desired robot behavior as a plan (Fig. 2c). The
planning framework, represents the policy as a sequence of
actions that lead from the initial state to the final goal state.
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Actions are often defined in terms of pre-conditions, the state
that must be established before the action can be performed, and
post-conditions, the state resulting from the action’s execution.
Unlike other LfD approaches, planning techniques frequently rely
not only on state–action demonstrations, but also on additional
information in the form of annotations or intentions from the
teacher. Demonstration-based algorithms differ in how the rules
associating pre- and post-conditions with actions are learned, and
whether additional information is provided by the teacher.
One of the first papers to learn execution plans based on

demonstration learns a plan for object manipulation based on
observations of the teacher’s hand movements [85]. A humanoid
learns a generalized plan, able to represent sequential tasks with
repetitions, from only two demonstrations of a repetitive ball
collection task [86]. Other approaches use spoken dialog both as
a technique to demonstrate task plans, and also to enable the
robot to verify unspecified or unsound parts of a plan through
dialog. Under such a framework, multiple teachers provide verbal
navigation instructions, with the intention of building a vocabulary
that maps to sensorimotor primitives [20], and a single teacher
presents a robot with a series of conditional statements that are
then processed into a plan [21].
Other planning-based methods require teacher annotations.

Overall task intentions provided in response to learner queries are
used to encode plan post-conditions [87], and human feedback
draws attention to particular elements of the domain when learn-
ing a high-level plan from shadowing [88]. Goal annotations in-
clude indicating the demonstrator’s goal and time points at which
it is achieved or abandoned when learning non-deterministic
plans [89], and providing binary feedback that grows or prunes
the goal set used to infer the demonstrator’s goal [90]. Annotations
of the demonstrated action sequence combine with high-level in-
structions, for example that some actions can occur in any order,
when learning a domain-specific hierarchical task model [91].

5. Limitations of the demonstration dataset

LfD systems are inherently linked to the information provided
in the demonstration dataset. As a result, learner performance is
heavily limited by the quality of this information. In this article
we identify two distinct causes for poor learner performance
within LfD frameworks and survey the techniques that have been
developed to address each limitation. The first cause, discussed in
Section 5.1, is due to dataset sparsity, or the existence of areas
of the state space that have not been demonstrated. The second,
discussed in Section 5.2, is due to poor quality of the dataset
examples, which can result from a teacher’s inability to perform
the task optimally.

5.1. Undemonstrated state

The availability of training data limits all LfD policies because,
in all but the most simple domains, the teacher is unable to
demonstrate the correct action from every possible state. This
raises the question of how the robot should act when it encounters
a state without a demonstration. We categorize existing methods
for dealing with undemonstrated state into two approaches:
generalization from existing demonstrations, and acquisition of new
demonstrations.

5.1.1. Generalization from existing demonstrations
Herewediscussmethods for using the existing data to dealwith

undemonstrated state. We present techniques as used within each
of the core approaches for policy derivation.
Within the function mapping approach, state generalization
deals with undemonstrated state. Generalizing across inputs
is a feature inherent to robust function approximation. The
exact nature of this generalization depends upon the specific
classification or regression technique used. Approaches range from
strict grouping with the nearest dataset point state, as in kNN, to
soft averaging across multiple states, as in kernelized regression.
Within the systemmodel approach, state exploration addresses

undemonstrated state. State exploration is often accomplished by
providing the learner with an exploration policy that guides action
selection within undemonstrated states. Rewards provided by the
world, automatically evaluate the performances of these actions.
This motivates the issue of Exploration vs. Exploitation; that is, of
determining how frequently to take exploratory actions versus
following the set policy. We note that taking exploratory steps
on a real robot system is often unwise, for safety and stability
reasons. A safe exploration policy is employed for the purposes of
gathering robot demonstration data, both to seed and then update
a transition model and reward function [12]. To guide exploration
within this work, initially a suboptimal controller is provided,
and once a policy is learned small amounts of Gaussian noise are
randomly added to the greedy actions of this policy.
Generalization to unseen states is not a common feature

amongst traditional planning algorithms. This is in large part
due to the common assumption that every action has a set of
known, deterministic effects on the environment that lead to
a particular known state. However, this assumption is typically
dropped in real-world applications, and among LfD approaches
several algorithms do explore the generalization of demonstrated
sequences. For example, the teacher specifies the level of generality
that was implied by a demonstration by answering the learner’s
questions (e.g. should the box be picked up only from the chair,
or from any surface besides the table?) [87]. Other approaches
focus on the development of generalized plans with flexible action
order [88,89].

5.1.2. Acquisition of new demonstrations
A fundamentally different approach to dealing with undemon-

strated state is to re-engage the teacher and acquire additional
demonstrations when novel states are encountered by the robot.
Under such a paradigm, the responsibility of selecting states for
demonstration now is shared between the robot and teacher.
One set of approaches acquire new demonstrations by enabling

the learner to evaluate its confidence in selecting a particular
action, based on the confidence of the underlying classification
algorithm. A robot requests additional demonstration in states
very different from previously demonstrated states or in which
a single action can not be selected with certainty [16,56], and a
teacher chooses to provide additional demonstrations based on the
robot indicating its certainty in performing various elements of the
task [23].

5.2. Poor quality data

The quality of a learned LfD policy depends heavily on the qual-
ity of the provided demonstrations. In general, approaches assume
the dataset to contain high quality demonstrations performed by
an expert. In reality, however, teacher demonstrationsmay be am-
biguous, unsuccessful or suboptimal in certain areas of the state
space. A naively learned policy will likely perform poorly in such
areas, [35]. In this section we discuss proposed approaches for im-
proving demonstration data and dealing with poor learner perfor-
mance.
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5.2.1. Suboptimal or ambiguous demonstrations
One approach to dealing with inefficient demonstrations is to

eliminate parts of the teacher’s execution that are suboptimal.
Other approaches address the ambiguities that can result from
single or multiple demonstrations.
Suboptimality is most common in demonstrations of low-level

tasks, such as movement trajectories for robotic arms. In these
domains, the demonstration serves as guidance instead of offering
a complete solution. Removing actions that do not contribute to
the solution of the task allows for the active identification and
removal of elements of the demonstration that are unnecessary
or inefficient [92]. Other approaches smooth or generalize over
suboptimal demonstrations in such a way as to improve upon
the teacher’s performance. For example, when learning motion
control, data from multiple repeated demonstrations is used to
obtain a smoothed optimal path [34,93,94], and data frommultiple
teachers encourages more robust generalization [8].
Uncaptured elements of the record mapping may cause dataset

ambiguity. Differences in teacher and learner perspectives dur-
ing externally recorded demonstrations are accounted for by
having the robot maintain separate belief estimates for itself
and the human demonstrator [19]. Teacher demonstrations that
are inconsistent between multiple executions also may cause
dataset ambiguity. This type of ambiguity arises due to the
presence of multiple equally applicable actions (e.g. both turn-
ing left and moving forward are equally valid actions) among
which the teacher selects arbitrarily, or due to state corruption
through sensor noise. The result in both cases is that identi-
cal, or nearly identical, states are mapped to different actions
in the demonstration. Approaches designed to address these
inconsistencies include requests for additional clarificationdemon-
strations from the teacher [56] and modeling the choice of actions
explicitly in the robot policy [95].

5.2.2. Learning from experience
An altogether different approach to dealing with poor quality

data has the student to learn from experience. If the learner is
provided with feedback that evaluates its performance, this may
be used to update its policy. This evaluation is generally provided
via teacher feedback, or through a reward as in RL.
Automatic policy evaluations enable a policy derived under the

mapping function approximation approach to be updated using RL
techniques [67]. The function approximation of thiswork considers
Q -values associated with paired query-demonstration points, and
these Q -values are updated based on learner executions and
a developer-defined reward function. Binary policy evaluations
from a human teacher prune a set of inferred teacher goals
[90], and human-provided binary tags flag portions of the learner
execution for poor performance enable updating a continuous-
action mapping function approximation [22].
Most use of RL-type rewards, however, occurs under the system

model approach.We emphasize that these are rewards seen during
learner execution with its policy, and not during teacher demon-
stration executions. [12] seeds the robot’s reward and transition
functions with a small number of suboptimal demonstrations, and
then optimizes the policy through exploration and RL. A similar ap-
proach is taken learning amotor primitives for a 7-DoF robotic arm
with the Natural Actor Critic algorithm [96]. [77] seeds the world
model is seeded with trajectories produced by a planner operating
on a simulated version of their robot; learner execution results in
state values being updated, and consequently also the policy. In ad-
dition to updating state values, student execution informationmay
be used to update the actual learned dynamics model T (s′|s, a), as
in work that seeds the world model with teacher demonstrations
[97]. Policy updates in thiswork consist of rederiving theworld dy-
namics after adding learner executions with this policy (and later
updated policies) to the demonstration set.
Beyond providing just an evaluation of performance, teacher
feedback may also provide a correction on the executed behavior.
The correct discrete action provided by a human teacher updates
the structure of a hierarchical Neural Network of robot behaviors
[88] and an action classifier [95]. Further challenging is for a human
to provide corrections in continuous action spaces. Kinesthetic
teaching, where passive humanoid joints are moved by the
teacher through the desiredmotions is one approach that provides
continuous-valued corrections [33]. Another approach has a set
of mathematical operations transform high-level advice from a
human teacher into continuous-valued corrections on students
executions [98].
Before concluding, we underline the advantage of providing

demonstrations and employing LfD before using traditional policy
learning techniques, such as exploration-basedmethods like RL. As
mentioned in Section 4.2.1, many traditional learning approaches
are not immediately applicable to robots. This is largely due
to the constraints of gathering experience on a real system. To
physically execute all actions from every state is likely infeasible,
may be dangerous, andwill not scale with continuous state spaces.
However, the use of these techniques to evaluate and improve
upon the experiences gained through an LfD system has proven
very successful.We consider this to be an areawithmuch potential
for future research, which we discuss further within Section 6.4.

6. Future directions

As highlighted by the discussion in the previous sections,
current approaches to LfD address a wide variety of problems
under many different conditions and assumptions. In this section,
we aim to highlight several promising areas of LfD research that
have received limited attention, ranging from data representation
to issues of system robustness and evaluation metrics.

6.1. Learned state features

Within all policy learning approaches, state information is
typically represented by a set of state features that describe various
attributes of the environment. Before learning begins, a developer
or user determines the set of features available for learning. A
robot learning a task knows nothing about the world beyond the
provided features. In selecting features, developers face a decision
between a larger number of features, which provide a richer
representation and allow for learning a wider range of tasks, and
a smaller number of features, which typically results in faster
learning times with less training data.
Most policy learning algorithms are typically provided with

exactly the data needed to learn a task, nothing more and nothing
less. Some approaches, however, do deal with extra features by
generalizing over irrelevant features [23] or filtering them out
through feature selection [99].
In addition to facing these challenges, we propose that future

LfD algorithms are likely to face a new problem—insufficient
features. Unlike standard robotics approaches, LfD does not require
extensive programming experience but rather only the ability to
demonstrate the task in the chosen manner. Due to the intuitive
nature of demonstration, LfD algorithms have the potential to
make robot programming accessible for everyday users who
have no programming experience and want to customize robot
behaviors. The use of current approaches by the general public,
however, is likely to lead to situations in which users attempt to
teach the robot tasks that cannot be learned simply due to the
lack of features describing some aspect of the task. An open area of
future work is to address this shortcoming by identifying intuitive
methods for introducing new features into the learning system.
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6.2. Temporal data

Actions within almost all robot behaviors have a temporal or-
dering, a natural progression in which actions of the task are per-
formed. Many policy learning algorithms, especially within the
area of planning, naturally encode the temporal ordering. How-
ever, the vast majority of LfD algorithms developed to date re-
sult in a purely reactive policy that maps directly from a state
to an action without considering past history or events. Reactive
approaches have repeatedly been shown to achieve good perfor-
mance, however they suffer from a number of drawbacks. By dis-
carding all temporal information from the training data, such al-
gorithms have a difficulty representing repetitive tasks, such as
ones in which an action sequence must be repeated some fixed
number of times. Additionally, learning becomes difficult in the
presence of actions which have no perceivable effect on the
environment and that therefore do not change the state of the
robot. Both of these challenges can be solved by including spe-
cial state features that represent the memory of recent events of
this nature; for example, anchoring demonstrations of repetitive
rhythmic tasks to the phase of a nonlinear oscillator [70]. However,
such features are always task specific and do not present a general
solution to this problem. Encoding temporal information into the
demonstration sequence is one approach that may achieve a more
universal solution. The development of such generalized LfD policy
learning techniques is an open area for future research.

6.3. Execution failures

With any LfD approach, it is possible that the policy will be
unable to execute as intended by the demonstration teacher. This
could be, for example, because the state representation does not
model crucial aspects of the world, or because the policy failed to
generalize properly from the demonstration data. All LfD systems
run the risk of encountering failures. The ability of a system to
identify and address failures and their causes is both extremely
valuable and extremely non-trivial.
A small number of works do directly address policy failures.

Policy derivation failure is considered by identifying when a HMM
fails to classify a demonstration and requesting that the human
teacher re-demonstrate the task [63]. Other work considers policy
execution failures: a robot learner recognizes when it is unable
to complete its task (for example, due to a physical obstruction)
and solicits the help of a human [62]. Though in this work the
robot identifies task failure, it does not identify the failure cause
or modify its policy; the intent is that human aid will enable task
completion (for example, remove the obstruction).

6.4. New techniques for learning from experience

The ability to learn from experience is a desirable trait in
any learning system. The most popular approaches implemented
within LfD systems to date offer reward-type evaluations of policy
performance (Section 5.2.2). Reward functions are often sparse,
however, and only offer an indication of how desirable being
in a given state is; reward gives no indication of which action
would have been more appropriate to select instead, for example.
Richer forms of performance evaluation, however, could benefit
approaches able to incorporate policy performance feedback.
There is no reason to expect that formalizing these richer eval-

uations is any easier than the admittedly challenging task of for-
mally defining reward functions (Section 4.2.2); if anything, it is
possible that a richer evaluation is even more difficult to cap-
ture. One promising solution has the demonstration teacher pro-
vide feedback on learner performance, in addition to providing the
example executions. Demonstration teachers presumably posses
a measure of task expertise, and so at the very least have exist-
ing measures by which to evaluate their own performance on the
task. Furthermore, metrics difficult to formalize or parameterize
but easy for a human to evaluate are available if the teacher is hu-
man. Steps in this direction utilize human teacher evaluations to
provide corrections on discrete action selection [16,88] to correct
state sequencing [54]. A human teacher also corrects continuous
action selection [98] and penalizes poorly performing demonstra-
tion data [22]. Exactly how to provide effective feedback, and then
how to use this information, is for the most part still an area open
for future research.

6.5. Multi-robot demonstration learning

LfD approaches to date focus almost exclusively on the problem
of a single robot being taught by a single teacher. However,
solutions to complex tasks often require the cooperation of
multiple robots. Multi-robot coordination has been extensively
studied in robotics research and presents many challenges, such
as issues of action coordination, communication, noise in shared
information, and physical interaction. Current LfD research is
beginning to take steps in this direction. Multiple autonomous
agents request advice and provide demonstrations for each other
[76], and agents with both similar and dis-similar embodiments
to learn movements from each other through imitation [51,100].
A confidence-based algorithm enables a single person to teach
multiple robots at the same time through the demonstration of
physical and communication actions required to perform the task
[65]. These studies only begin to explore the various applications
of LfD in themulti-robot setting, andmany directions remain open
for future work.

6.6. Evaluation metrics

LfD is a relatively young but rapidly growing field. As
highlighted by this survey, a wide variety of approaches address
the challenges presented by this learning method. However, to
date there exists little direct comparison between algorithms.
One reason for this absence of direct comparisons is that most

approaches are tested using only a single domain and robotic
platform. As a result, such techniques are often customized to that
particular domain and do not present a general solution to a wide
class of problems. Additionally, the field of LfD research currently
lacks a standard set of evaluation metrics, further complicating
performance comparisons across algorithms and domains.
Improved methods for evaluation and comparison are a

fundamentally important area for future work. Existing evaluation
methods include several proposed for specific areas of LfD [101–
104], and potentially some from the Human–Robot Interaction
(HRI) community [105]. The formalization of evaluation criteria
would help to drive research and the development of widely
applicable general-purpose learning techniques.

7. Conclusion

In this article we have presented a comprehensive survey of
Learning from Demonstration (LfD) techniques employed to address
the robotics control problem. LfD has the attractive characteristics
of being an intuitive communication medium for human teachers
and of opening control algorithm development to non-robotics-
experts. Additionally, LfD complements many traditional policy
learning techniques, offering a solution to some of the weaknesses
in traditional approaches. Consequently, LfD has been successfully
applied to many robotics applications.
The LfD robotics community, however, suffers from the lack

of an established structure in which to organize approaches. In
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this survey, we have contributed such a structure, through a
categorization of LfD techniques.We first segment the LfD learning
problem into two fundamental phases. The first phase consists of
gathering the demonstration examples. Within this phase we cat-
egorize according to how the demonstration is executed and how
the demonstration is recorded. The second phase consists of deriv-
ing a policy from the demonstration examples. Within this phase
we categorize according to what is learned: an approximation to
the state–actionmapping (mapping function), a model of the world
dynamics and/or reward (system model), or a model of action pre-
and post-conditions (plans). We have further contributed a catego-
rization of current approaches into this structure.
Though LfD has proven a successful tool for robot policy

development, there still existmany open areas for research, several
of which we have identified. In particular, learning state features
and considering the temporal nature of demonstration data are
interesting directions to explore within the context of building a
dataset and policy. System robustness could increase by explicitly
dealing with policy derivation and execution failures. New
approaches to learning from experience, that are specific to LfD
systems, hold much promise for improving policy performance,
and LfD extends naturally into multi-robot domains, which is an
intriguing area that remains largely open. Finally, a standardized
set of evaluation metrics would facilitate comparisons between
approaches and implementations, to the benefit of the LfD
community as a whole.
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