Evaluation of Representations in AI Problem Solving

Eugene Fink
Computer Science, Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
e.fink@cs.cmu.edu, www.cs.cmu.edu/~eugene

Abstract — We formalize the concept of domain repre-
sentation in artificial intelligence, and propose a frame-
work for evaluating representation and comparing alter-
native representations.

Keywords: Representation, utility, search, artificial
intelligence.

1 Introduction

The performance of all reasoning systems crucially de-
pends on problem representation; the same task may be
easy or difficult, depending on the way we describe it.
Researchers in psychology and artificial intelligence have
accumulated much evidence on the importance of appro-
priate representations for both humans and artificial-
intelligence systems; however, the notion of “good” rep-
resentations has remained at an informal level.

We propose a formal definition of representations, and
a framework for their quantitative evaluation. The de-
velopment of this framework is part of a project focused
on automatic improvement of representations [4, 5, 6].
We review several approaches to defining representation
(Section 2) and give a formal definition based on Simon’s
view of representation as “data structures and programs
operating on them” (Section 3). We then define a utility
of problem solving (Section 4), and propose a measure of
representation quality based on this utility (Section 5).

2 Alternative definitions

Informally, a problem representation is a certain view
of a problem and an approach to solving it. Although
researchers agree in their intuitive understanding of this
concept, they have not yet developed its standard for-
malization. We outline several views of representation,
summarized in Figure 1.

Problem formulation: Amarel was first to point
out the impact of representation on the efficiency of
search [1, 2, 3]. He considered some problems of reason-
ing about actions in a simulated world, and discussed
their alternative formulations in the input language of
a search algorithm. He showed that a specific formula-
tion of a problem determines its state space, that is, the

Representation...

e includes a machine language for the description of
reasoning tasks and a specific encoding of a given
problem in this language (Amarel [3]).

e is the space expanded by a solver algorithm during
its search for a solution (Newell and Simon [12]).

e is the state space of a given problem, formed by all
legal states of the simulated world and transitions
between them (Korf [9]).

e “consists of both data structures and programs
operating on them to make new inferences” (Si-
mon [10]).

e determines a mapping from the behavior of an
artificial-intelligence system on a certain set of in-
puts to the behavior of another system, which per-
forms the same task on a similar set of inputs
(Holte [7]).

Figure 1: Definitions of representation in artificial intelli-
gence; note that these definitions are not equivalent.

space of possible states of the simulated world and tran-
sitions between them, and that the efficiency of problem
solving depends on the size of this space.

Van Baalen adopted a similar view in his work on a
theory of representation design [14]. He defined repre-
sentation as a mapping from concepts to their syntac-
tic description in a formal language, and implemented
a program that automatically improved descriptions of
simple reasoning tasks.

Problem space: Newell and Simon investigated the
role of representation in human problem solving [12].
They observed that a human subject always encodes
a given task in a problem space, that is, “some kind
of space that represents the initial situation presented
to him, the desired goal situation, various intermediate
states, imagined or experienced, as well as any concepts
he uses to describe these situations to himself” [12].
They defined representation as the subject’s prob-
lem space, which determines partial solutions considered
during search for a complete solution. This definition



is also applicable to artificial-intelligence systems since
most systems use the same principle of searching among
partial solutions.

Observe that the problem space may differ from the
state space of the simulated world. The subject may
disregard some of the allowed transitions and, on the
other hand, consider impossible world states. For in-
stance, when people work on difficult versions of the
Tower-of-Hanoi puzzle, they sometimes attempt illegal
moves [13]. Moreover, the problem solver may abstract
from the search among world states and use an alterna-
tive view of partial solutions.

State space: Korf described a formal framework for
automated improvement of representations [9]. He de-
veloped a language for describing search problems, and
defined representation as a specific encoding of a prob-
lem in this language. The encoding included the initial
state of the simulated world and operations for trans-
forming the state; hence, it defined the state space.
Korf pointed out the correspondence between the
problem encoding and state space, which allowed him
to view representation as a space of states and transi-
tions between them. Korf’s notion of representation did
not include the behavior of a search algorithm. Since
the performance depended not only on the state space
but also on the search strategies, representation in his
framework did not uniquely determine the efficiency.

Data and programs: Simon suggested a general def-
inition of representation as “data structures and pro-
grams operating on them” [10]. When describing the
behavior of human subjects, he viewed their initial en-
coding of a given problem as a “data structure,” and the
available productions for modifying it as “programs.”
Since the problem encoding and rules for changing it de-
termined the subject’s search space, this view was sim-
ilar to the earlier definition by Newell and Simon [12].

If we apply Simon’s definition in other research con-
texts, the notions of data structures and programs may
take different meanings. The general concept of “data
structures” encompasses any form of a system’s input
and internal representation of related information. Sim-
ilarly, the term “programs” may refer to any strategies
and procedures for processing a given problem.

System’s behavior: Holte developed a framework for
the analysis and comparison of learning systems, which
included rigorous mathematical definitions of task do-
mains and their representations [7]. He considered rep-
resentations of domains rather than specific problems,
which distinguished his view from the earlier definitions.

A domain in Holte’s framework includes a set of ele-
mentary entities, a collection of primitive functions that
describe the relationships among entities, and legal com-
positions of primitive functions. For example, we may
view the world states as elementary objects and tran-
sitions between them as primitive functions. A domain

A problem solver is an algorithm that performs
some type of reasoning tasks. When we invoke this
algorithm, it inputs a given problem and searches for a
solution; it may solve the problem or report a failure.

A problem description is an input to a solver. In
most search systems, it includes allowed operations,
initial world state, logical statement describing goals,
and possibly heuristics for guiding the search.

A domain description is the part of a problem
description that is common for a certain class of
problems. It usually does not include a specific initial
state or goals.

A representation is a domain description with a prob-
lem solver that uses this description. A representation
change may involve improving a description, selecting
a new solver, or both.

Figure 2: Definitions of a problem solver, domain descrip-
tion, and representation.

specification may include not only a description of rea-
soning tasks, but also a system’s behavior on them.

Representation is a mapping between two domains
that encode the same reasoning tasks. It may describe
a system’s behavior on two different encodings of a prob-
lem. Alternatively, it may show the correspondence be-
tween the behavior of two different systems that perform
the same task.

3 Domain representation

We follow Simon’s view of representation as “data
structures and programs operating on them”; however,
the notion of data structures and programs in the pro-
posed framework differs from his definition in the re-
search on human problem solving. We summarize the
related terminology in Figure 2.

A problem solver is an algorithm that inputs a prob-
lem, domain description, and time bound, and then
searches for a solution. It terminates when it finds a so-
lution, exhausts its search space, or hits the time bound.

A problem description is an input to a solver, which
encodes a certain reasoning task. This notion is analo-
gous to Amarel’s “problem formulation,” which is part
of his definition of representation.

A problem description in artificial intelligence usually
consists of two main parts, a domain description and
problem instance. The first part includes the properties
of a simulated world, which is called the problem do-
main. For example, the domain of the Tower-of-Hanoi
puzzle may specify the legal states and moves. The
second part encodes a particular reasoning task, which
may include an initial state of the simulated world and
a goal specification. For example, a problem instance in
the Tower-of-Hanoi domain may include the initial posi-



tions of all disks and their desired final positions. Thus,
a domain description is the part of a problem descrip-
tion that is common for all problems in the domain.

A representation consists of a domain description and
a solver algorithm that operates on this description. If
the algorithm does not make random choices, the rep-
resentation uniquely defines the search space for every
problem, which relates this definition to Newell and Si-
mon’s view of representation as a search space.

4 Gain function

We describe a framework for evaluating representa-
tions, which accounts for the number of solved problems,
running time, and solution quality.

We assume that the application of a problem solver
leads to one of three outcomes: finding a solution, ter-
minating with failure after exhausting the search space,
or hitting a time bound. Note that a failure may some-
times be more valuable than a time-bound interrupt;
for example, if the search algorithm is complete, then a
failure indicates that the given problem has no solution,
which may be useful information.

We pay for running time and get a reward for solving
a problem; the reward may depend on a specific problem
and its solution. We may also get a reward for finding
out that the search space has no solution, but we never
get a reward for a time-bound termination. The overall
gain is a function of a problem, time, and search result.
We denote it by gn(prob, time, result), where prob is the
problem, time is the running time, and result may be
a solution or one of two unsuccessful outcomes: a fail-
ure to solve a problem (denoted fail) or a time-bound
interrupt (denoted intr). Note that fail and intr are not
variables; hence, we do not italicize them.

Basic constraints: A user has to provide a specific
gain function, thus encoding value judgments about dif-
ferent outcomes. We impose three constraints on the
allowed gain functions.

1. The gain decreases with the time:

For every prob, result, and time; < timea,
gn(prob, timey, result) > gn(prob, times, result).

2. A zero-time interrupt gives zero gain:

For every prob,
gn(prob, 0, intr) = 0.

3. The gain of solving a problem or exhausting the
search space is no smaller than the interrupt gain:
For every prob, time, and soln,

(a) gn(probd, time, soln) > gn(prob, time, intr),
(b) gn(prob, time, fail) > gn(probd, time, intr).

Observe that the gain of doing nothing is always zero
(Constraint 2). Furthermore, Constraints 1 and 2 imply
that an interrupt without finding a solution never gives
a positive gain, whereas Constraints 2 and 3 imply that
the gain of instantly finding a solution is nonnegative.

We define a relative quality of solutions through a
gain function. Suppose that soln; and solny are two so-
lutions for a problem prob.

solny has higher quality than solns if, for every time,
gn(prob, time, solny) > gn(prob, time, solny).

If soln, gives larger gains than solny for some running
times and lower gains for others, then neither of them
has higher quality than the other.

Additional constraints: We now discuss three addi-
tional constraints, which describe typical special cases.
We first observe that practical gain functions usually
satisfy the following condition.

4. If soln; gives a larger gain than solny for zero time,
it gives larger gains for all other times:
For every prob, time, solny, and solng,
if gn(prob,0, solny) > gn(prob, 0, solny),
then gn(prob, time, solny) > gn(prob, time, solny).
If gain satisfies this constraint, we can compare the qual-
ity of any two solutions; that is, for every problem, its
solutions are totally ordered by quality. We can then
define a quality function, quality(prob, result), that sat-
isfies the following conditions for every problem and ev-
ery two results:
o quality(prob, intr) = 0.
o If gn(prob, 0, result;) = gn(probd, 0, resulty),
then quality(prob, resulty) = quality(prob, resulty).
o If gn(prob, 0, result;) > gn(prob, 0, resulty),
then quality(probd, resulty) > quality(prob, results).
Note that most domains have natural quality measures
that satisfy these conditions. For example, we may de-
fine the quality of a solution for the Tower-of-Hanoi puz-
zle as the number of moves.
We may view gain as a function of a problem, time,
and solution quality, denoted gng(prob, time, quality),
which satisfies the following condition:

For every prob, time, and result,
gnq(prob, time, quality(prob, result))
= gn(probd, time, result).
Note that gain is an increasing function of quality:
If quality, < quality,, then
gnq(prob, time, quality,) < gnq(prob, time, quality,).
We next consider two other special-case constraints:
5. We can decompose the gain into the payment for
time and the reward for solving a problem:
For every prob, time, and result,
gn(prob, time, result)
= gn(prob, time, intr) + gn(probd, 0, result).
6. The sum payment for two interrupts that take time;

and timey is the same as the payment for an inter-
rupt that takes time; + times:

For every prob, time;, and times,
gn(prob, timey , intr) + gn(prob, timea, intr)



= gn(prob, timey + times, intr).
If gain satisfies Constraint 5, then it also satisfies
Constraint 4; furthermore, if we define quality as
quality(prob, result) = gn(prob, 0, result), then gn, is a
linear function of quality:

gnq(prob, time, quality) = gn(prob, time, intr) + quality.

If gain satisfies Constraint 6, the interrupt gain is pro-
portional to time:

gn(prob, time, intr) = time - gn(prob, 1,intr).

Constraints 5 and 6 together lead to the following de-
composition of the gain function:

gn(prob, time, result)
= time - gn(prob, 1, intr) + gn(prob, 0, result).

5 Representation quality

We derive a utility function for evaluating represen-
tations, and then extend this result to account for the
use of time bounds and multiple representations.

Utility function: We assume that solver algorithms
never make random choices; then, for every problem
prob, representation uniquely determines the running
time, time(prob), and the result, result(prob). There-
fore, it also uniquely determines the respective gain,
gn(prob, time(prob), result(prob)). We define a represen-
tation utility by averaging the gain over all problems [8].
We denote the set of problems by P, assume a fixed
probability distribution on P, and denote the proba-
bility of encountering prob by p(prob). If we select a
problem at random, the expected gain is as follows:

G = Z p(prob) - gn(prob, time(prod), result(prod)).
probeP

We use G as a utility function for evaluating represen-
tation, which unifies the three utility dimensions: num-
ber of solved problems, speed, and solution quality.

Time bounds: If we never interrupt a solver, its search
time may be infinite. In practice, we eventually have to
stop the search, which means that we always set some
bound on the allowed search time. If we use a bound B,
the search time and result are as follows:

time¢’ = min(B, time(prob))
;o result(prob), if B > time(prob)
result = { intr, it B < time(prob)

Thus, the choice of a bound may affect the search time
and result, which implies that it affects the gain. We
denote the function that maps problems and bounds
into gains by gn':

gn’ (prob, B) = gn(prob, time', result’).

If gain satisfies Constraint 4, and we use a quality
measure quality(prob, result), then we can define gn’ in
terms of the solution quality. If we use a time bound B,
the solution quality is as follows:

quality(prob, result(prob)),
if B > time(prob)
quality(prob, intr),
if B < time(prob)

quality (prob, B) =

We then express gn’ through the function gng defined
in Section 4:

gn/ (prob, B) = gnq(prob, time', quality (prob, B)).

The choice of a time bound often depends on a specific
problem; for example, users of artificial-intelligence sys-
tems usually set smaller bounds for smaller-scale prob-
lems. We have suggested some heuristics for choosing
time bounds, along with learning algorithms for improv-
ing these heuristics, in an article on selection of problem-
solving methods [6].

If we view the selected time bound as a function of
a given problem, B(prob), the expected gain for a ran-
domly selected problem is as follows:

¢ = Z p(prob) - gn’ (prob, B(prob)).
probeP

Multiple representations: We next consider the use
of multiple representations; that is, we analyze a sys-
tem that includes a library of solver algorithms and re-
lated data structures, along with a manual or automated
mechanism for selecting among them [6, 11, 15].

We denote the number of available representations
by k, and consider the respective gain functions
gnq, ..., gn;, and bound-selection functions Bi,..., B.
When solving a problem prob with representation i, we
set the time bound B;(prob) and use gn, to determine
the gain. For every i, we define the function gn/ in the
same way as we have defined gn’; the gain of solving
prob with representation 4 is gn}(prob, B;(prob)).

For each given problem prob, either the user or
an automated control module chooses an appropriate
representation i(prob), and then sets the respective
bound Bj(prep) (prob). If we select a problem at random,
the expected gain is as follows:

G = Z p(prob) - gni(yrop) (PT0D, Bi(pron) (pTob)).
probeP

Thus, the utility G depends on the gain function,
probability distribution, and procedure for selecting rep-
resentations and time bounds.

6 Concluding remarks

We have proposed a definition of representation in
artificial-intelligence problem solving, and a framework



for evaluating representations. This framework shows
that the relative quality of representations depends on
the user’s judgment of relative solution quality, proba-
bilities of encountering different problems, and heuris-
tics for selecting appropriate time bounds. Thus, it con-
firms the well-known observation that no representation
is universally better than the others, and the choice of
representation should depend on specific requirements
and problem types.

We have applied the described framework to develop
a mechanism for evaluation and selection of representa-
tions [6], which is part of a system for automated rep-
resentation improvement [5].

The framework is based on several simplifying as-
sumptions, and we plan to build a more general frame-
work as part of the future work. In particular, we have
assumed that all solver algorithms are sound; that is,
they always produce correct solutions. Furthermore, we
have assumed that solvers do not use any-time behavior;
that is, a solver finds a solution and terminates rather
than outputting successively better solutions. We have
also assumed that solvers do not make random choices;
however, we can readily extend the framework to ran-
domized solvers by viewing every possible behavior as a
separate problem-solving episode.

References

[1] Saul Amarel. An approach to automatic theory forma-
tion. In Heinz M. Von Foerster, editor, Principles of
Self-Organization: Transactions. Pergamon Press, New
York, Ny, 1961.

[2] Saul Amarel. Problem solving procedures for efficient
syntactic analysis. In Proceedings of the ACM Twentieth
National Conference, 1965.

[3] Saul Amarel. On representations of problems of reason-
ing about actions. In Donald Michie, editor, Machine
Intelligence 3, pages 131-171. American Elsevier Pub-
lishers, New York, NY, 1968.

[4] Eugene Fink. Systematic approach to the design of
representation-changing algorithms. In Proceedings of
the Symposium on Abstraction, Reformulation, and Ap-
prozimation, pages b4-61, 1995.

[5] Eugene Fink. Changes of Problem Representation:
Theory and Experiments. Springer, Berlin, Germany,
2003.

[6] Eugene Fink. Automatic evaluation and selection of
problem-solving methods: Theory and experiments.
Journal of Experimental and Theoretical Artificial In-
telligence, 16(2):73-105, 2004.

[7] Robert C. Holte. An Analytical Framework for Learning
Systems. PhD thesis, Artificial Intelligence Laboratory,
University of Texas at Austin, 1988. Technical Report
AI-88-72.

[8] Sven Koenig. Goal-Directed Acting with Incomplete In-
formation. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1997. Technical Report
CMU-CS-97-199.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Richard E. Korf. Toward a model of representation
changes. Artificial Intelligence, 14:41-78, 1980.

Jill H. Larkin and Herbert A. Simon. Why a diagram
is (sometimes) worth ten thousand words. Cognitive
Science, 11(1):65-99, 1987.

Steven Minton. Automatically configuring constraint
satisfaction programs: A case study. Constraints: An
International Journal, 1(1-2):7-43, 1996.

Allen Newell and Herbert A. Simon. Human Problem
Solving. Prentice Hall, Upper Saddle River, NJ, 1972.
Herbert A. Simon, Kenneth Kotovsky, and John R.
Hayes. Why are some problems hard? Evidence from
the Tower of Hanoi. Cognitive Psychology, 17:248-294,
1985.

Jeffrey Van Baalen. Toward a Theory of Representation
Design. PhD thesis, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1989. Technical
Report 1128.

David E. Wilkins and Karen L. Myers. A multiagent
planning architecture. In Proceedings of the Fourth In-
ternational Conference on Artificial Intelligence Plan-
ning Systems, pages 154-162, 1998.



