Modelling lithosphere dynamics with robust rheological implementations: Towards 3D

T. Duretz, R. de Borst, L. Raess P. Yamato, A. Souche, L. Le Pourhiet

UNIL | Université de Lausanne

European Research Council Established by the European Commiss

ETH zürich

Problem statement

thrust final stage

Experimental faulting in sand Experiment of Hubbert 1951 Geol. Soc. Am. Bull. 62(4), 355-372

J.-P. Burg online lecture notes

.15

 u_x/H

Hubbert, 1951

Modelling faulting in a continuum: Faults have characteristic angles (~30° from S1) Plasticity is pressure dependent Deformation in rocks is quasi-incompressible Plastic flow is hence non associated Difference between friction/dilation angles is large Strain-dependent material softening may occur

Problems with numerical models:

Things get worst with material softening: load bearing capacities become mesh-dependent

Methodology - viscoplasticity

a) Maxwell elasto-plasticity (E-P)

b) Maxwell visco-elasto-plasticity (V-E-P)

c) Elasticity with Kelvin viscoplasticity (E-VP)

d) Maxwell visco-elasticity with Kelvin viscoplasticity (V-E-VP)

Modelling approach 2: «geodynamics»

- Velocity-based FD mechanical solver
 - Incompressibity
 - Non-associated Drucker-Prager
- Consistent tangent linearization (CTL)
- Effective viscosity approach with Newton linearization (ETA)

b) y - momentum

a) x - momentum

 $I u_v$

Modelling approach 1: «engineering»

- Displacement-based FD mechanical solver
 - Elastic & plastic compressibility
 - Non-associated Drucker-Prager
 - Consistent tangent linearization (CTL)

Out of the many existing regularization methods, let's test the simplest one! --> testing V-E-VP instead of V-E-P model

Shear band analysis

Shear bands angle is not affected by viscoplastic regularization

Shear band thickness, strain, strain rate, pressure converge upon mesh refinement.

Incompressible limit and strain softening

Regularization also works together in the plastic incompressible limit and together with cohesion strain-softening.

5000

5

Localization with random seeds and resolution

Duretz et al., 2019

Fairly good convergence upon mesh refinement even with random seeds and softening.

Most importantly, momentum balance <u>converges quadractically</u> at every timestep, whatever the resolution.

Applicable to geodynamic models?

Duretz et al., in prep. CTL was developped for velocity-based geodynamic codes including compressible and incompressible cases.

Both succeed at modelling strain localization in visco-elasto-(visco)plastic continuum. Both the CTL and ETA approach deliver comparable results with V-E-P models. Both can lead to quadratically converging momentum equilibrium.

Crustal-scale application

Code based on M2Di routines

Incompressible velocity based formulation.

Viscoplastic regularization, gravity, temperature-dependent power-law creep - V-E-VP model

<u>Quadratic convergence of momentum equations + good convergence upon mesh refinement!</u>