Skip to main content

The Spherical-Wave Based Full-Potential ASW Method

  • Chapter
The Augmented Spherical Wave Method

Part of the book series: Lecture Notes in Physics ((LNP,volume 849))

  • 1397 Accesses

Abstract

In contrast to the plane-wave based full-potential ASW method the scheme presented in this chapter aims at expressing the wave function, electron density, and effective potential throughout in terms of spherical waves, i.e. of atom-centered functions. Such an approach offers the distinct advantages of being applicable to both crystalline solids and finite systems as, e.g., molecules and clusters and at the same time allowing for very high computational efficiency due to the small basis sets needed. Again, the main steps are outlined in detail. This chapter concludes with two sections on local electronic correlations as covered by the LDA+U method as well as on the calculation of electric field gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Anisimov, F. Aryasetiawan, A.I. Liechtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  2. V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    Article  ADS  Google Scholar 

  3. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  4. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  5. K. Atkinson, J. Austral. Math. Soc. B 23, 332 (1982)

    Article  MATH  Google Scholar 

  6. U. von Barth, Density functional theory for solids, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 67–140

    Chapter  Google Scholar 

  7. U. von Barth, An overview of density functional theory, in Many-Body Phenomena at Surfaces, ed. by D. Langreth, H. Suhl (Academic Press, Orlando, 1984), pp. 3–50

    Google Scholar 

  8. Z.P. Bažant, B.H. Oh, Z. Angew. Math. Mech. 66, 37 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. P.E. Blöchl, Gesamtenergien, Kräfte und Metall-Halbleiter Grenzflächen, PhD thesis, Universität Stuttgart, 1989

    Google Scholar 

  10. M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1995)

    Article  ADS  Google Scholar 

  11. F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 42, 5459 (1990)

    Article  ADS  Google Scholar 

  12. V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens, PhD thesis, Technische Hochschule Darmstadt, 1991

    Google Scholar 

  13. V. Eyert, Electronic Structure of Crystalline Materials, 2nd edn. (University of Augsburg, Augsburg, 2005)

    Google Scholar 

  14. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  15. P. Keast, J. Comput. Appl. Math. 17, 151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Keast, J.C. Diaz, SIAM J. Numer. Anal. 20, 406 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Kübler, V. Eyert, Electronic structure calculations, in Electronic and Magnetic Properties of Metals and Ceramics, ed. by K.H.J. Buschow (VCH Verlagsgesellschaft, Weinheim, 1992), pp. 1–145; vol. 3A of Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH Verlagsgesellschaft, Weinheim, 1991–1996)

    Google Scholar 

  18. F. Lechermann, Ab-initio Betrachtungen zur Elektronenstruktur und Statistischen Mechanik von mehrkomponentigen intermetallischen Systemen am Beispiel Ni-Fe-Al, PhD thesis, University of Stuttgart, 2003

    Google Scholar 

  19. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  20. A.D. McLaren, Math. Comput. 17, 361 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.S. Methfessel, Phys. Rev. B 38, 1537 (1988)

    Article  ADS  Google Scholar 

  22. M.S. Methfessel, M. van Schilfgaarde, R.A. Casali, A full-potential LMTO method based on smooth Hankel functions, in Electronic Structure and Physical Properties of Solids. The Uses of the LMTO Method, ed. by H. Dreyssé (Springer, Berlin, 2000), pp. 114–147

    Chapter  Google Scholar 

  23. I.P. Mysovskih, Sov. Math. Dokl. 18, 925 (1977)

    Google Scholar 

  24. A.G. Petukhov, I.I. Mazin, L. Chioncel, A.I. Liechtenstein, Phys. Rev. B 67, 153106 (2003)

    Article  ADS  Google Scholar 

  25. A.S. Popov, Comput. Math. Math. Phys. 35, 369 (1995)

    MathSciNet  MATH  Google Scholar 

  26. S.Y. Savrasov, D.Y. Savrasov, Phys. Rev. B 46, 12181 (1992)

    Article  ADS  Google Scholar 

  27. A.B. Shick, A.I. Liechtenstein, W.E. Pickett, Phys. Rev. B 60, 10763 (1999)

    Article  ADS  Google Scholar 

  28. I.V. Solovyev, P.H. Dederichs, V.I. Anisimov, Phys. Rev. B 50, 16861 (1994)

    Article  ADS  Google Scholar 

  29. M. Springborg, O.K. Andersen, J. Chem. Phys. 87, 7125 (1987)

    Article  ADS  Google Scholar 

  30. A.H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, 1971)

    MATH  Google Scholar 

  31. A.H. Stroud, SIAM J. Numer. Anal. 10, 559 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. K.-H. Weyrich, Phys. Rev. B 37, 10269 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eyert, V. (2012). The Spherical-Wave Based Full-Potential ASW Method. In: The Augmented Spherical Wave Method. Lecture Notes in Physics, vol 849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25864-0_5

Download citation

Publish with us

Policies and ethics