Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 849))

  • 1427 Accesses

Abstract

The survey of the various augmented spherical wave (ASW) method starts with an outline of the standard scheme. Within the framework of density functional theory and the (semi-)local approximations it allows for both fast and conceptually simple calculations of the ground state properties of solids. On an introductory level this chapter follows the natural sequence of a self-consistency cycle as usually performed in first principles calculations and explains the main steps comprising the calculation of the basis functions, the electron density, and the effective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)

    MATH  Google Scholar 

  2. H. Akai, P.H. Dederichs, J. Phys. C 18, 2455 (1985)

    Article  ADS  Google Scholar 

  3. O.K. Andersen, Comments on the KKR-wavefunction; Extension of the spherical wave expansion beyond the muffin-tins, in Computational Methods in Band Theory, ed. by P.M. Marcus, J.F. Janak, A.R. Williams (Plenum Press, New York, 1971), pp. 178–182

    Chapter  Google Scholar 

  4. O.K. Andersen, Solid State Commun. 13, 133 (1973)

    Article  ADS  Google Scholar 

  5. O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  6. O.K. Andersen, Linear methods in band theory, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 11–66

    Chapter  Google Scholar 

  7. O.K. Andersen, Muffin-tin orbital theory, in Methods on Electronic Structure Calculations. Lecture Notes from the ICTP Workshop (International Center for Theoretical Physics, Trieste, 1992)

    Google Scholar 

  8. O.K. Andersen, O. Jepsen, D. Glötzel, Canonical description of the band structures of metals, in Highlights of Condensed-Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi. Proceedings of the International School of Physics “Enrico Fermi”, Course LXXXIX (North-Holland, Amsterdam, 1985), pp. 59–176

    Google Scholar 

  9. D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. U. von Barth, Density functional theory for solids, in The Electronic Structure of Complex Systems, ed. by P. Phariseau, W. Temmerman (Plenum Press, New York, 1984), pp. 67–140

    Chapter  Google Scholar 

  11. U. von Barth, An overview of density functional theory, in Many-Body Phenomena at Surfaces, ed. by D. Langreth, H. Suhl (Academic Press, Orlando, 1984), pp. 3–50

    Google Scholar 

  12. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)

    Article  ADS  Google Scholar 

  13. P. Bendt, A. Zunger, Phys. Rev. B 26, 3114 (1982)

    Article  ADS  Google Scholar 

  14. S. Blügel, First principles calculations of the electronic structure of magnetic overlayers on transition metal surfaces, PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 1987

    Google Scholar 

  15. C.G. Broyden, Math. Comput. 19, 577 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.G. Broyden, Math. Comput. 21, 368 (1966)

    MathSciNet  Google Scholar 

  17. P.H. Dederichs, R. Zeller, Phys. Rev. B 28, 5462 (1983)

    Article  ADS  Google Scholar 

  18. J.E. Dennis Jr., J.J. Moré, SIAM Review 19, 46 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  20. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  21. H. Eschrig, The Fundamentals of Density Functional Theory (Edition am Gutenbergplatz, Leipzig, 2003)

    MATH  Google Scholar 

  22. P.P. Ewald, Ann. Phys. 64, 253 (1921)

    Article  MATH  Google Scholar 

  23. V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens, PhD thesis, Technische Hochschule Darmstadt, 1991

    Google Scholar 

  24. V. Eyert, J. Comput. Phys. 124, 271 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. V. Eyert, Electronic structure calculations for crystalline materials, in Density Functional Methods: Applications in Chemistry and Materials Science, ed. by M. Springborg (Wiley, Chichester, 1997), pp. 233–304

    Google Scholar 

  26. V. Eyert, Octahedral deformations and metal-insulator transition in transition metal chalcogenides, Habilitation thesis, University of Augsburg, 1998

    Google Scholar 

  27. V. Eyert, Int. J. Quantum Chem. 77, 1007 (2000)

    Article  Google Scholar 

  28. V. Eyert, Electronic Structure of Crystalline Materials, 2nd edn. (University of Augsburg, Augsburg, 2005)

    Google Scholar 

  29. L.G. Ferreira, J. Comput. Phys. 36, 198 (1980)

    Article  ADS  MATH  Google Scholar 

  30. E.R. Fuller, E.R. Naimon, Phys. Rev. B 6, 3609 (1972)

    Article  ADS  Google Scholar 

  31. C.D. Gelatt Jr., H. Ehrenreich, R.E. Watson, Phys. Rev. B 15, 1613 (1977)

    Article  ADS  Google Scholar 

  32. D. Hackenbracht, Berechnete elektronische und thermomechanische Eigenschaften einiger La-In und Al-Ni-Verbindungen, Diploma thesis, Ruhr-Universität Bochum, 1979

    Google Scholar 

  33. F.S. Ham, B. Segall, Phys. Rev. 124, 1786 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)

    Article  ADS  Google Scholar 

  35. L. Hodges, R.E. Watson, H. Ehrenreich, Phys. Rev. B 5, 3953 (1972)

    Article  ADS  Google Scholar 

  36. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  37. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  38. D.D. Johnson, Phys. Rev. B 38, 12807 (1988)

    Article  ADS  Google Scholar 

  39. G.P. Kerker, Phys. Rev. B 23, 3082 (1981)

    Article  ADS  Google Scholar 

  40. W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954)

    Article  ADS  MATH  Google Scholar 

  41. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    MathSciNet  ADS  Google Scholar 

  42. W. Kohn, P. Vashishta, General density functional theory, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum Press, New York, 1983), pp. 79–147

    Google Scholar 

  43. J. Korringa, Physica 13, 392 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  44. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  45. J. Kübler, V. Eyert, Electronic structure calculations, in Electronic and Magnetic Properties of Metals and Ceramics, ed. by K.H.J. Buschow (VCH Verlagsgesellschaft, Weinheim, 1992), pp. 1–145; vol. 3A of Materials Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH Verlagsgesellschaft, Weinheim, 1991–1996)

    Google Scholar 

  46. J. Kübler, K.-H. Höck, J. Sticht, A.R. Williams, J. Phys. F 18, 469 (1988)

    Article  ADS  Google Scholar 

  47. J. Kübler, K.-H. Höck, J. Sticht, A.R. Williams, J. Appl. Phys. 63, 3482 (1988)

    Article  ADS  Google Scholar 

  48. M. Levy, J.P. Perdew, Phys. Rev. B 48, 11638 (1993)

    Article  ADS  Google Scholar 

  49. J.M. MacLaren, D.P. Clougherty, M.E. McHenry, M.M. Donovan, Comput. Phys. Commun. 66, 383 (1991)

    Article  ADS  MATH  Google Scholar 

  50. P.M. Marcus, J.F. Janak, A.R. Williams, Computational Methods in Band Theory (Plenum Press, New York, 1971)

    Book  MATH  Google Scholar 

  51. S.F. Matar, Progr. Solid State Chem. 31, 239 (2003)

    Article  Google Scholar 

  52. A. Messiah, Quantum Mechanics, vol. 1 (North Holland, Amsterdam, 1976)

    Google Scholar 

  53. M.S. Methfessel, Zur Berechnung der Lösungswärme von Metallhydriden, Diploma thesis, Ruhr-Universität Bochum, 1980

    Google Scholar 

  54. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978)

    Google Scholar 

  55. W. Nolting, Grundkurs: Theoretische Physik, vol. 5, part 1: Quantenmechanik – Grundlagen (Springer, Berlin, 2004)

    Google Scholar 

  56. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  57. J.P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in Electronic Structure of Solids’91, ed. by P. Ziesche, H. Eschrig (Akademie Verlag, Berlin, 1991), pp. 11–20

    Google Scholar 

  58. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  59. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  60. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  61. J.P. Perdew, Y. Wang, Phys. Rev. B 33, 8800 (1986)

    Article  ADS  Google Scholar 

  62. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  63. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  64. P. Pulay, Chem. Phys. Lett. 73, 393 (1980)

    Article  ADS  Google Scholar 

  65. L.M. Sandratskii, Adv. Phys. 47, 91 (1998)

    Article  ADS  Google Scholar 

  66. B. Segall, F.S. Ham, in Methods in Computational Physics, ed. by B. Alder, S. Fernbach, M. Rotenberg (Academic Press, New York, 1968), pp. 251–293

    Google Scholar 

  67. C.A. Sholl, Proc. Phys. Soc. 92, 434 (1967)

    Article  ADS  Google Scholar 

  68. D. Singh, H. Krakauer, C.S. Wang, Phys. Rev. B 34, 8391 (1986)

    Article  ADS  Google Scholar 

  69. H.L. Skriver, The LMTO Method (Springer, Berlin, 1984)

    Book  Google Scholar 

  70. J.C. Slater, Phys. Rev. 51, 846 (1937)

    Article  ADS  Google Scholar 

  71. G.P. Srivastava, J. Phys. A 17, L317 (1984)

    Article  ADS  Google Scholar 

  72. J. Sticht, K.-H. Höck, J. Kübler, J. Phys.: Cond. Matt. 1, 8155 (1989)

    Article  ADS  Google Scholar 

  73. J. Sticht, Bandstrukturrechnung für Schwere-Fermionen-Systeme, PhD thesis, Technische Hochschule Darmstadt, 1989

    Google Scholar 

  74. D. Vanderbilt, S.G. Louie, Phys. Rev. B 30, 6118 (1984)

    Article  ADS  Google Scholar 

  75. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  76. R.E. Watson, H. Ehrenreich, L. Hodges, Phys. Rev. Lett. 15, 829 (1970)

    Article  ADS  Google Scholar 

  77. A.R. Williams, U. von Barth, Applications of density functional theory to atoms, molecules and solids, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum Press, New York, 1983), pp. 189–307

    Google Scholar 

  78. A.R. Williams, J. Kübler, C.D. Gelatt Jr., Phys. Rev. B 19, 6094 (1979)

    Article  ADS  Google Scholar 

  79. Y. Zhang, W. Yang, Phys. Rev. Lett. 80, 890 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eyert, V. (2012). The Standard ASW Method. In: The Augmented Spherical Wave Method. Lecture Notes in Physics, vol 849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25864-0_2

Download citation

Publish with us

Policies and ethics