Skip to main content

Polymer Self-assembly on Carbon Nanotubes

  • Chapter
  • First Online:
Self-Assembly of Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 12))

Abstract

This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV–Vis and Raman), we show how the polymer’s higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π–π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The multi-wall nanotubes reported in Palaci’s study had external radii ranging from 0.2 to 12 nm and constant R ext/R int ratio of 2.2 ± 0.2 nm; in the reported case, the external radii are 6.5 and 8.75 nm and the R ext/R int ratio is 2.23 and 2.46.

  2. 2.

    The value provided for the Young’s modulus of P3HT has been measured for polymer films. The authors believe that the tensile strength of the single polymer backbone can be higher, confirming the possibility of carbon nanotube deformation by P3HT strands.

  3. 3.

    It must be noticed that a charge migration from the nanotube to the polymer could have supported upshifts higher than expected, but would have failed to explain the relative downshift at higher polymer contents.

  4. 4.

    Although thermal annealing can enhance the polymer crystallisation order, Raman spectra collected on pristine P3HT samples before and after the thermal treatment did not show any downshift. This confirms that the nanotube sidewall structure can act as template to promote a more ordered polymer phase.

  5. 5.

    With high-energy electron beam is intended a radiation able to raise the temperature of the sample under analysis. Although there is no control of the temperature of the sample in the time frame under analysis, damages to the nanotube can be excluded. The damage of the sample occurred after a long-time exposure (not shown).

Abbreviations

°C:

Degree Celsius

AC:

Alternating current

AFM:

Atomic force microscopy

AR:

Analytical reagent

cm:

Centimetre

cm−1 :

Wavenumber

CNT:

Carbon nanotube

CuPc:

Copper phthalocyanines

CVD:

Chemical vapour deposition

DC:

Direct current

DOS:

Density of states

dTG:

Differential thermal gravimetry

DWNT:

Double-walled carbon nanotube

EQE:

External quantum efficiency

FWHM:

Full width half maximum

HOMO:

Highest occupied molecular orbital

HOPG:

Highly oriented pyrolytic graphite

HR-TEM:

High-resolution transmission electron microscopy

I sc :

Short-circuit current

ITO:

Indium tin oxide

LDOS:

Local density of states

LUMO:

Lowest unoccupied molecu lar orbital

MDMO-PPV:

Poly(2-methoxy-5-(3′,7′- dimethyloctyloxy)-1,4- phenylenevinylene)

MEH-PPV:

Poly[(2-methoxy-5-(2′- ethylhexoxy)-p-phenylene) vinylene]

mg:

Milligram

MIM:

Metal–insulator–metal

min:

Minute

ml:

Millilitre

mW:

Milliwatt

MWNT:

Multi-walled carbon nanotube

nm:

Nanometre

NP:

Nanoparticles

OPV:

Organic photovoltaic

P3HT:

Poly(3-hexylthiophene)

P3OT:

Poly(3-octylthiophene)

PCE:

Power conversion efficiency

PEDOT:PSS:

Poly(3,4-ethylenediox ythiophene):poly (styrenesulfonate)

PmPV:

Poly[(m-phenylene vinylene)-co-(2,5-dioctoxy- p-phenylenevinylene)]

PPV:

Poly(phenylenevinylene)

rr-P3HT:

Regioregular poly(3- hexylthiophene)

SCLC:

Space charge limited current regime

SEM:

Scanning electron microscopy

STM:

Scanning tunnelling microscopy

STS:

Scanning tunnelling spectroscopy

SWNT:

Single-walled carbon nanotube

TD-SCLC:

Trap-dominated space- charge-limited current regime

TEM:

Transmission electron microscopy

TF-SCLC:

Trap free space charge lim ited current regime

TG:

Thermogravimetry

TGA:

Thermogravimetric analysis

UHV-STM:

Ultra-high vacuum scanning tunnelling microscopy

UHV-STS:

Ultra-high vacuum scanning tunnelling spectroscopy

UV–Vis:

Ultraviolet–visible

V:

Volt

v :

Volume

V OC :

Open circuit voltage

w :

Weight

References

  1. Kymakis, E., Alexandou, I., Amaratunga, G.A.J.: Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation. Synth. Met. 127(1–3), 59–62 (2002)

    Google Scholar 

  2. Kymakis, E., Alexandrou, I., Amaratunga, G.A.J.: High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 93(3), 1764–1768 (2003)

    ADS  Google Scholar 

  3. Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80(1), 112–114 (2002)

    ADS  Google Scholar 

  4. Pyo, M., Bae, E.G., Cho, Y., Jung, Y.S., Zong, K.: Composites of low bandgap conducting polymer-wrapped MWNT and poly(methyl methacrylate) for low percolation and high transparency. Synth. Met. 160(19–20), 2224–2227 (2010). doi:10.1016/j.synthmet.2010.07.032

    Google Scholar 

  5. Coleman, J.N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K.P., Belton, C., Fonseca, A., Nagy, J.B., Gun’ko, Y.K., Blau, W.J.: High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)

    Google Scholar 

  6. Wall, A., Coleman, J.N., Ferreira, M.S.: Physical mechanism for the mechanical reinforcement in nanotube-polymer composite materials. Phys. Rev. B 71(12), 125421 (2005)

    ADS  Google Scholar 

  7. O’Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y.H., Haroz, E., Kuper, C., Tour, J., Ausman, K.D., Smalley, R.E.: Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342(3–4), 265–271 (2001)

    Google Scholar 

  8. Star, A., Steuerman, D.W., Heath, J.R., Stoddart, J.F.: Starched carbon nanotubes. Angew. Chem. 114(14), 2618–2622 (2002). doi:10.1002/1521-3757(20020715)114:14<2618::aid-ange2618>3.0.co;2-4

    Google Scholar 

  9. Kim, O.-K., Je, J., Baldwin, J.W., Kooi, S., Pehrsson, P.E., Buckley, L.J.: Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 125(15), 4426–4427 (2003). doi:10.1021/ja029233b

    Google Scholar 

  10. Chen, J., Dyer, M.J., Yu, M.-F.: Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123(25), 6201–6202 (2001). doi:10.1021/ja015766t

    Google Scholar 

  11. Chambers, G., Carroll, C., Farrell, G.F., Dalton, A.B., McNamara, M., In het Panhuis, M., Byrne, H.J.: Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett. 3(6), 843–846 (2003). doi:10.1021/nl034181p

    ADS  Google Scholar 

  12. Dodziuk, H., Ejchart, A., Anczewski, W., Ueda, H., Krinichnaya, E., Dolgonos, G., Kutner, W.: Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with [small eta]-cyclodextrin. Chem. Commun. 8, 986–987 (2003)

    Google Scholar 

  13. Dieckmann, G.R., Dalton, A.B., Johnson, P.A., Razal, J., Chen, J., Giordano, G.M., Muñoz, E., Musselman, I.H., Baughman, R.H., Draper, R.K.: Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125(7), 1770–1777 (2003). doi:10.1021/ja029084x

    Google Scholar 

  14. Chen, R.J., Zhang, Y., Wang, D., Dai, H.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001). doi:10.1021/ja010172b

    Google Scholar 

  15. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2(5), 338–342 (2003)

    ADS  Google Scholar 

  16. Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650), 1545–1548 (2003)

    ADS  Google Scholar 

  17. Kang, Y.K., Lee, O.-S., Deria, P., Kim, S.H., Park, T.-H., Bonnell, D.A., Saven, J.G., Therien, M.J.: Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett. 9(4), 1414–1418 (2009). doi:10.1021/nl8032334

    ADS  Google Scholar 

  18. Naito, M., Nobusawa, K., Onouchi, H., Nakamura, M., Yasui, K.-I., Ikeda, A., Fujiki, M.: Stiffness- and conformation-dependent polymer wrapping onto single-walled carbon nanotubes. J. Am. Chem. Soc. 130(49), 16697–16703 (2008). doi:10.1021/ja806109z

    Google Scholar 

  19. Yi, W., Malkovskiy, A., Chu, Q., Sokolov, A.P., Colon, M.L., Meador, M., Pang, Y.: Wrapping of single-walled carbon nanotubes by a π-conjugated polymer: the role of polymer conformation-controlled size selectivity. J. Phys. Chem. B 112(39), 12263–12269 (2008). doi:10.1021/jp804083n

    Google Scholar 

  20. Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., Strevens, A.: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv. Mater. 10(14), 1091 (1998)

    Google Scholar 

  21. Star, A., Stoddart, J.F., Steuerman, D., Diehl, M., Boukai, A., Wong, E.W., Yang, X., Chung, S.-W., Choi, H., Heath, J.R.: Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. 113(9), 1771–1775 (2001)

    Google Scholar 

  22. Star, A., Stoddart, J.F.: Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules 35(19), 7516–7520 (2002). doi:10.1021/ma0204150

    ADS  Google Scholar 

  23. Keogh, S.M., Hedderman, T.G., Lynch, P., Farrell, G.F., Byrne, H.J.: Bundling and diameter selectivity in HiPco SWNTs poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) composites. J. Phys. Chem. B 110(39), 19369–19374 (2006). doi:10.1021/jp056321k

    Google Scholar 

  24. Bernardi, M., Giulianini, M., Grossman, J.C.: Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells. ACS Nano 4(11), 6599–6606 (2010). doi:10.1021/nn1018297

    Google Scholar 

  25. Caddeo, C., Melis, C., Colombo, L., Mattoni, A.: Understanding the helical wrapping of poly(3-hexylthiophene) on carbon nanotubes. J. Phys. Chem. C 114(49), 21109–21113 (2010). doi:10.1021/jp107370v

    Google Scholar 

  26. Tallury, S.S., Pasquinelli, M.A.: Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J. Phys. Chem. B 114(12), 4122–4129 (2010). doi:10.1021/jp908001d

    Google Scholar 

  27. Liu, Y., Chipot, C., Shao, X., Cai, W.: Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J. Phys. Chem. B 114(17), 5783–5789 (2010). doi:10.1021/jp9110772

    Google Scholar 

  28. Gurevitch, I., Srebnik, S.: Monte Carlo simulation of polymer wrapping of nanotubes. Chem. Phys. Lett. 444(1–3), 96–100 (2007). doi:10.1016/j.cplett.2007.06.112

    ADS  Google Scholar 

  29. Gurevitch, I., Srebnik, S.: Conformational behavior of polymers adsorbed on nanotubes. J. Chem. Phys. 128(14), 144901–144908 (2008). doi:10.1063/1.2894842

    ADS  Google Scholar 

  30. Srebnik, S.: Physical association of polymers with nanotubes. J. Polym. Sci. B Polym. Phys. 46(24), 2711–2718 (2008). doi:10.1002/polb.21605

    ADS  Google Scholar 

  31. Bolto, B.A., McNeill, R., Weiss, D.E.: Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16(6), 1090–1103 (1963)

    Google Scholar 

  32. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Google Scholar 

  33. Malliaras, G., Friend, R.: An organic electronics primer. Phys. Today 58(5), 53–58 (2005)

    ADS  Google Scholar 

  34. Roncali, J.: Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem. Rev. 92(4), 711–738 (2002)

    Google Scholar 

  35. Naarmann, H.: Polymers, electrically conducting. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2002). doi:10.1002/14356007.a21_429

    Google Scholar 

  36. Pope, M., Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers, 2nd edn. Oxford University Press, New York (1999)

    Google Scholar 

  37. Moliton, A.: Optoelectronics of Molecules and Polymers. Springer, New York (2006)

    Google Scholar 

  38. Somoza, M.M.: Depiction of Franck–Condon principle in absorption and fluorescence. http://en.wikipedia.org/wiki/File:Franck-Condon-diagram.png (2006)

  39. Somoza, M.M.: Depiction of absorption and fluorescence progression due to changes in vibrational levels during electronic transition. http://en.wikipedia.org/wiki/File:Vibration-fluor-abs.png (2006)

  40. Peumans, P., Bulovic, V., Forrest, S.R.: Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76(26), 3855–3857 (2000)

    ADS  Google Scholar 

  41. Jerome, D., Bechgaard, K.: Condensed-matter physics: superconducting plastic. Nature 410(6825), 162–163 (2001)

    ADS  Google Scholar 

  42. Hugger, S., Thomabb, R., Heinzel, T., Thurn-Albrecht, T.: Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym. Sci. 282, 932–938 (2004)

    Google Scholar 

  43. Prosa, T.J., Winokur, M.J., Moulton, J., Smith, P., Heeger, A.J.: X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules 25(17), 4364–4372 (1992)

    ADS  Google Scholar 

  44. Chung, T.C., Kaufman, J.H., Heeger, A.J., Wudl, F.: Charge storage in doped poly(thiophene): optical and electrochemical studies. Phys. Rev. B 30(2), 702 (1984)

    ADS  Google Scholar 

  45. Mintmire, J.W., White, C.T., Elert, M.L.: Heteroatom effects in heterocyclic ring chain polymers. Synth. Met. 16(2), 235–243 (1986)

    Google Scholar 

  46. Kaneto, K., Kohno, Y., Yoshino, K.: Absorption spectra induced by photoexcitation and electrochemical doping in polythiophene. Solid State Commun. 51(5), 267–269 (1984)

    ADS  Google Scholar 

  47. Harbeke, G., Meier, E., Kobel, W., Egli, M., Kiess, H., Tosatti, E.: Spectroscopic evidence for polarons in poly(3-methylthiophene). Solid State Commun. 55(5), 419–422 (1985)

    ADS  Google Scholar 

  48. Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C.: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77(3), 406–408 (2000)

    ADS  Google Scholar 

  49. Nalwa, H.S.: Handbook of Organic Conductive Molecules and Polymers, vol. 3. Wiley, New York (1997)

    Google Scholar 

  50. Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J., Frechet, J.M.J.: Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15(18), 1519–1522 (2003)

    Google Scholar 

  51. Joung, M.J., Kim, C.A., Kang, S.Y., Baek, K.-H., Kim, G.H., Ahn, S.D., You, I.K., Ahn, J.H., Suh, K.S.: The application of soluble and regioregular poly(3-hexylthiophene) for organic thin-film transistors. Synth. Met. 149(1), 73–77 (2005)

    Google Scholar 

  52. Goh, C., Kline, R.J., McGehee, M.D., Kadnikova, E.N., Frechet, J.M.J.: Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl. Phys. Lett. 86(12), 122110–122113 (2005)

    ADS  Google Scholar 

  53. Hotta, S., Soga, M., Sonoda, N.: Novel organosynthetic routes to polythiophene and its derivatives. Synth. Met. 26(3), 267–279 (1988)

    Google Scholar 

  54. Kaminorz, Y., Smela, E., Inganäs, O., Brehmer, L.: Sensitivity of polythiophene planar light-emitting diodes to oxygen. Adv. Mater. 10(10), 765–769 (1998)

    Google Scholar 

  55. Abdou, M.S.A., Orfino, F.P., Xie, Z.W., Deen, M.J., Holdcroft, S.: Reversible charge-transfer complexes between molecular-oxygen and poly(3-alkylthiophene)S. Adv. Mater. 6(11), 838–841 (1994)

    Google Scholar 

  56. Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N.S., Latrèche, M., Czeremuszkin, G., Wertheimer, M.R.: A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511–512, 349–353 (2006)

    Google Scholar 

  57. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    ADS  Google Scholar 

  58. Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). doi:10.1126/science.287.5453.637

    ADS  Google Scholar 

  59. Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., Baughman, R.H.: Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)

    ADS  Google Scholar 

  60. Iijima, S., Brabec, C., Maiti, A., Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104(5), 2089–2092 (1996)

    ADS  Google Scholar 

  61. Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 215502 (2001)

    ADS  Google Scholar 

  62. Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999). doi:10.1126/science.284.5418.1340

    ADS  Google Scholar 

  63. Ströck, M.: Allotropes of carbon. http://en.wikipedia.org/wiki/File:Eight_Allotropes_of_Carbon.png (2006)

  64. Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F., Thio, T.: Electrical conductivity of individual carbon nanotubes. Nature 382(6586), 54–56 (1996)

    ADS  Google Scholar 

  65. Saito, R., Dresselhaus, M.S., Dresselhaus, G.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Google Scholar 

  66. Collins, P.G., Bradley, K., Ishigami, M., Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801–1804 (2000). doi:10.1126/science.287.5459.1801

    ADS  Google Scholar 

  67. Cantalini, C., Valentini, L., Armentano, I., Kenny, J.M., Lozzi, L., Santucci, S.: Carbon nanotubes as new materials for gas sensing applications. J. Eur. Ceram. Soc. 24(6), 1405–1408 (2004)

    Google Scholar 

  68. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). doi:10.1126/science.287.5453.622

    ADS  Google Scholar 

  69. Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S.: Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75(6), 873–875 (1999)

    ADS  Google Scholar 

  70. Murakami, H., Hirakawa, M., Tanaka, C., Yamakawa, H.: Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)

    ADS  Google Scholar 

  71. Kim, P., Lieber, C.M.: Nanotube nanotweezers. Science 286(5447), 2148–2150 (1999). doi:10.1126/science.286.5447.2148

    Google Scholar 

  72. Hafner, J.H., Cheung, C.L., Lieber, C.M.: Growth of nanotubes for probe microscopy tips. Nature 398(6730), 761–762 (1999)

    ADS  Google Scholar 

  73. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G.: Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004). doi:10.1126/science.1092048

    ADS  Google Scholar 

  74. O’Connell, M.: Carbon Nanotubes Properties and Applications. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  75. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    ADS  Google Scholar 

  76. Bethune, D.S., Klang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430), 605–607 (1993)

    ADS  Google Scholar 

  77. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, M.L., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644), 756–758 (1997)

    ADS  Google Scholar 

  78. Waldorff, E.I., Waas, A.M., Friedmann, P.P., Keidar, M.: Characterization of carbon nanotubes produced by arc discharge: effect of the background pressure. J. Appl. Phys. 95(5), 2749–2754 (2004)

    ADS  Google Scholar 

  79. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996). doi:10.1126/science.273.5274.483

    ADS  Google Scholar 

  80. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y.-S., Lee, T.R., Colbert, D.T., Smalley, R.E.: Fullerene pipes. Science 280(5367), 1253–1256 (1998). doi:10.1126/science.280.5367.1253

    ADS  Google Scholar 

  81. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105–1107 (1998). doi:10.1126/science.282.5391.1105

    ADS  Google Scholar 

  82. Ren, Z.F., Huang, Z.P., Wang, D.Z., Wen, J.G., Xu, J.W., Wang, J.H., Calvet, L.E., Chen, J., Klemic, J.F., Reed, M.A.: Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75(8), 1086–1088 (1999)

    ADS  Google Scholar 

  83. Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)

    ADS  Google Scholar 

  84. Venema, L.C.: Electronic Structure of Carbon Nanotubes. IOS Press, Amsterdam (2000)

    Google Scholar 

  85. Avouris, P.: Carbon nanotube electronics. Chem. Phys. 281(2–3), 429–445 (2002)

    ADS  Google Scholar 

  86. Venema, L.C., Meunier, V., Lambin, P., Dekker, C.: Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys. Rev. B 61(4), 2991 (2000)

    ADS  Google Scholar 

  87. Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506 (1998)

    ADS  Google Scholar 

  88. Mintmire, J.W., White, C.T.: Electronic and structural properties of carbon nanotubes. Carbon 33(7), 893–902 (1995)

    Google Scholar 

  89. Akai, Y., Saito, S.: Electronic structure, energetics and geometric structure of carbon nanotubes: a density-functional study. Physica E Low Dimens. Syst. Nanostruct. 29(3–4), 555–559 (2005)

    ADS  Google Scholar 

  90. Brown, E., Hao, L., Gallop, J.C., Macfarlane, J.C.: Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 87(2), 023107 (2005)

    ADS  Google Scholar 

  91. Kymakis, E., Koudoumas, E., Franghiadakis, I., Amaratunga, G.A.J.: Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. J. Phys. D Appl. Phys. 39(6), 1058–1062 (2006)

    ADS  Google Scholar 

  92. Miller, A.J., Hatton, R.A., Silva, S.R.P.: Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics. Appl. Phys. Lett. 89(12), 123115 (2006)

    ADS  Google Scholar 

  93. Miller, A.J., Hatton, R.A., Silva, S.R.P.: Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89(13), 133117 (2006)

    ADS  Google Scholar 

  94. Patyk, R.L., Lomba, B.S., Nogueira, A.F., Furtado, C., Santos, A.P., Mello, R.M.Q., Micaroni, L., Hümmelgen, I.A.: Carbon nanotube-polybithiophene photovoltaic devices with high open-circuit voltage. Phys. Stat. Sol. Rapid Res. Lett. 1(1), R43–R45 (2007)

    ADS  Google Scholar 

  95. Geng, J., Zeng, T.: Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128(51), 16827–16833 (2006). doi:10.1021/ja065035z

    Google Scholar 

  96. Kanai, Y., Grossman, J.C.: Insights on interfacial charge transfer across P3HT/fullerene photovoltaic heterojunction from ab initio calculations. Nano Lett. 7(7), 1967–1972 (2007). doi:10.1021/nl0707095

    ADS  Google Scholar 

  97. Kanai, Y., Grossman, J.C.: Role of semiconducting and metallic tubes in P3HT/carbon-nanotube photovoltaic heterojunctions: density functional theory calculations. Nano Lett. 8(3), 908–912 (2008). doi:10.1021/nl0732777

    ADS  Google Scholar 

  98. Du Pasquier, A., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87(20), 203511 (2005)

    ADS  Google Scholar 

  99. Rowell, M.W., Topinka, M.A., McGehee, M.D., Prall, H.-J., Dennler, G., Sariciftci, N.S., Hu, L., Gruner, G.: Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88(23), 233506 (2006)

    ADS  Google Scholar 

  100. van de Lagemaat, J., Barnes, T.M., Rumbles, G., Shaheen, S.E., Coutts, T.J., Weeks, C., Levitsky, I., Peltola, J., Glatkowski, P.: Organic solar cells with carbon nanotubes replacing In[sub 2]O[sub 3]:Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503 (2006)

    ADS  Google Scholar 

  101. Berson, S., de Bettignies, R., Bailly, S., Guillerez, S., Jousselme, B.: Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv. Funct. Mater. 17(16), 3363–3370 (2007)

    Google Scholar 

  102. Pradhan, B., Batabyal, S.K., Pal, A.J.: Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl. Phys. Lett. 88(9), 093106 (2006)

    ADS  Google Scholar 

  103. Wu, M.-C., Lin, Y.-Y., Chen, S., Liao, H.-C., Wu, Y.-J., Chen, C.-W., Chen, Y.-F., Su, W.-F.: Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes. Chem. Phys. Lett. 468(1–3), 64–68 (2009)

    ADS  Google Scholar 

  104. Kymakis, E., Kornilios, N., Koudoumas, E.: Carbon nanotube doping of P3HT: PCBM photovoltaic devices. J. Phys. D Appl. Phys. 41(16), 165110 (2008)

    ADS  Google Scholar 

  105. Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125(31), 9258–9259 (2003). doi:10.1021/ja0354418

    Google Scholar 

  106. Shim, M., Shi Kam, N.W., Chen, R.J., Li, Y., Dai, H.: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002). doi:10.1021/nl015692j

    ADS  Google Scholar 

  107. Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003)

    ADS  Google Scholar 

  108. Giulianini, M., Waclawik, E.R., Bell, J.M., Scarselli, M., Castrucci, P., De Crescenzi, M. et al.: Microscopic and spectroscopic investigation of Poly(3-hexylthiophene) interaction with carbon nanotubes. Polymers 3(3), 1433–1446 (2011)

    ADS  Google Scholar 

  109. Trznadel, M., Pron, A., Zagorska, M., Chrzaszcz, R., Pielichowski, J.: Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly(3-hexylthiophene). Macromolecules 31(15), 5051–5058 (1998). doi:10.1021/ma970627a

    ADS  Google Scholar 

  110. Brown, P.J., Thomas, D.S., Kohler, A., Wilson, J.S., Kim, J.S., Ramsdale, C.M., Sirringhaus, H., Friend, R.H.: Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67(6), 064203 (2003)

    ADS  Google Scholar 

  111. Hotta, S., Rughooputh, S.D.D.V., Heeger, A.J., Wudl, F.: Spectroscopic studies of soluble poly(3-alkylthienylenes). Macromolecules 20(1), 212–215 (2002). doi:10.1021/ma00167a038

    ADS  Google Scholar 

  112. Wu, H.-X., Qiu, X.-Q., Cao, W.-M., Lin, Y.-H., Cai, R.-F., Qian, S.-X.: Polymer-wrapped multiwalled carbon nanotubes synthesized via microwave-assisted in situ emulsion polymerization and their optical limiting properties. Carbon 45(15), 2866–2872 (2007)

    Google Scholar 

  113. Dresselhaus, M.S., Dresselhaus, G., Hofmann, M.: The big picture of Raman scattering in carbon nanotubes. Vib. Spectrosc. 45(2), 71–81 (2007)

    Google Scholar 

  114. McNally, T., Potschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E.J., Brennan, G.P., Bein, D., Lemoine, P., Quinn, J.P.: Polyethylene multiwalled carbon nanotube composites. Polymer 46, 8222–8232 (2005)

    Google Scholar 

  115. Baibarac, M., Lapkowski, M., Pron, A., Lefrant, S., Baltog, I.: SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states. J. Raman Spectrosc. 29(9), 825–832 (1998)

    ADS  Google Scholar 

  116. Claye, A., Rahman, S., Fischer, J.E., Sirenko, A., Sumanasekera, G.U., Eklund, P.C.: In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem. Phys. Lett. 333(1–2), 16–22 (2001)

    ADS  Google Scholar 

  117. Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., Smalley, R.E.: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388(6639), 257–259 (1997)

    ADS  Google Scholar 

  118. Baskaran, D., Mays, J.W., Bratcher, M.S.: Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17(13), 3389–3397 (2005)

    Google Scholar 

  119. Czerw, R., Guo, Z., Ajayan, P.M., Sun, Y.-P., Carroll, D.L.: Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett. 1(8), 423–427 (2001). doi:10.1021/nl015548y

    ADS  Google Scholar 

  120. Shan, B., Cho, K.: First-principles study of work functions of double-wall carbon nanotubes. Phys. Rev. B 73(8), 081401–081404 (2006)

    ADS  Google Scholar 

  121. Chirvase, D., Chiguvare, Z., Knipper, M., Parisi, J., Dyakonov, V., Hummelen, J.C.: Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells. Synth. Met. 138(1–2), 299–304 (2003)

    Google Scholar 

  122. Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.: Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett. 7(3), 583–587 (2007)

    ADS  Google Scholar 

  123. Lu, J., Nagase, S., Zhang, X., Wang, D., Ni, M., Maeda, Y., Wakahara, T., Nakahodo, T., Tsuchiya, T., Akasaka, T., Gao, Z., Yu, D., Ye, H., Mei, W.N., Zhou, Y.: Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. J. Am. Chem. Soc. 128(15), 5114–5118 (2006). doi:10.1021/ja058214+

    Google Scholar 

  124. Chen, F., Wang, B., Chen, Y., Li, L.-J.: Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 7(10), 3013–3017 (2007)

    MathSciNet  ADS  Google Scholar 

  125. Coleman, J.N., Ferreira, M.S.: Geometric constraints in the growth of nanotube-templated polymer monolayers. Appl. Phys. Lett. 84(5), 798–800 (2004)

    ADS  Google Scholar 

  126. Hugelmann, M., Schindler, W.: Schottky diode characteristics of electrodeposited Au/n-Si(111) nanocontacts. Appl. Phys. Lett. 85(16), 3608–3610 (2004)

    ADS  Google Scholar 

  127. Gheber, L.A., Hershfinkel, M., Gorodetsky, G., Volterra, V.: Scanning tunneling spectroscopy studies of the Au-H-terminated Si interface. Appl. Phys. Lett. 69(3), 400 (1996)

    ADS  Google Scholar 

  128. Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)

    ADS  Google Scholar 

  129. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Conductance of a molecular junction. Science 278(5336), 252–254 (1997). doi:10.1126/science.278.5336.252

    Google Scholar 

  130. Akai-Kasaya, M., Shimizu, K., Watanabe, Y., Saito, A., Aono, M., Kuwahara, Y.: Electronic structure of a polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite. Phys. Rev. Lett. 91(25), 255501 (2003)

    ADS  Google Scholar 

  131. Terada, Y., Choi, B.-K., Heike, S., Fujimori, M., Hashizume, T.: Injection of molecules onto hydrogen-terminated Si(100) surfaces via a pulse valve. J. Appl. Phys. 93(12), 10014–10017 (2003)

    ADS  Google Scholar 

  132. Cadek, M., Coleman, J.N., Barron, V., Hedicke, K., Blau, W.J.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81(27), 5123–5125 (2002)

    ADS  Google Scholar 

  133. Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73(26), 3842–3844 (1998)

    ADS  Google Scholar 

  134. Zhan, G.-D., Kuntz, J.D., Wan, J., Mukherjee, A.K.: Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2(1), 38–42 (2003)

    ADS  Google Scholar 

  135. Bower, C., Rosen, R., Jin, L., Han, J., Zhou, O.: Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett. 74(22), 3317–3319 (1999)

    ADS  Google Scholar 

  136. Lourie, O., Cox, D.M., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81(8), 1638 (1998)

    ADS  Google Scholar 

  137. Wagner, H.D., Lourie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72(2), 188–190 (1998)

    ADS  Google Scholar 

  138. Hadjiev, V.G., Iliev, M.N., Arepalli, S., Nikolaev, P., Files, B.S.: Raman scattering test of single-wall carbon nanotube composites. Appl. Phys. Lett. 78(21), 3193 (2001)

    ADS  Google Scholar 

  139. Musumeci, A.W., Silva, G.G., Liu, J.-W., Martens, W.N., Waclawik, E.R.: Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer 48(6), 1667–1678 (2007)

    Google Scholar 

  140. Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705–013708 (2007)

    ADS  Google Scholar 

  141. Note: Polymer 3D structure generated with Archim v2.1. http://www.archimy.com

  142. Giulianini, M., Waclawik, E.R., Bell, J.M., De Crescenzi, M., Castrucci, P., Scarselli, M., Motta, N.: Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. Appl. Phys. Lett. 95(1), 013304 (2009)

    Google Scholar 

  143. Mena-Osteritz, E.: Superstructures of self-organizing thiophenes. Adv. Mater. 14(8), 609–616 (2002)

    Google Scholar 

  144. Goh, R.G.S., Motta, N., Bell, J.M., Waclawik, E.R.: Effects of substrate curvature on the adsorption of poly(3-hexylthiophene) on single-walled carbon nanotubes. Appl. Phys. Lett. 88(5), 053101–053103 (2006)

    ADS  Google Scholar 

  145. Grevin, B., Rannou, P., Payerne, R., Pron, A., Travers, J.P.: Scanning tunneling microscopy investigations of self-organized poly(3-hexylthiophene) two-dimensional polycrystals. Adv. Mater. 15(11), 881–884 (2003)

    Google Scholar 

  146. Mena-Osteritz, E., Meyer, A., Langeveld-Voss, B.M.W., Janssen, R.A.J., Meijer, E.W., Bauerle, P.: Two-dimensional crystals of poly(3-alkylthiophene)s: direct visualization of polymer folds in submolecular resolution. Angew. Chem. 39(15), 2680–2684 (2000)

    Google Scholar 

  147. Brinkmann, M., Wittmann, J.C.: Orientation of regioregular poly(3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer. Adv. Mater. 18(7), 860–863 (2006)

    Google Scholar 

  148. Giulianini, M., Capasso, A., Waclawik, E., Bell, J., Scarselli, M., Castrucci, P., De Crescenzi, M., Motta, N.: UHV-STM study of P3HT adhesion on carbon nanotubes for solar cells application. Paper presented at the Proceedings of Nanophotonics Down Under 2009 Devices and Applications

    ADS  Google Scholar 

  149. McCarthy, B., Coleman, J.N., Czerw, R., Dalton, A.B., Panhuis, M.I.H., Maiti, A., Drury, A., Bernier, P., Nagy, J.B., Lahr, B., Byrne, H.J., Carroll, D.L., Blau, W.J.: A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 106(9), 2210–2216 (2002)

    Google Scholar 

  150. Wei, C.: Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 6(8), 1627–1631 (2006)

    ADS  Google Scholar 

  151. Kraabel, B., Moses, D., Heeger, A.J.: Direct observation of the intersystem crossing in poly(3-octylthiophene). J. Chem. Phys. 103(12), 5102–5108 (1995)

    ADS  Google Scholar 

  152. Giulianini, M., Waclawik, E.R., Bell, J.M., Scarselli, M., Castrucci, P., De Crescenzi, M., Motta, N.: Poly(3-hexyl-thiophene) coil-wrapped single wall carbon nanotube investigated by scanning tunneling spectroscopy. Appl. Phys. Lett. 95(14), 143116 (2009)

    Google Scholar 

  153. Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103(38), 8116–8121 (1999). doi:10.1021/jp991659y

    Google Scholar 

  154. Ouyang, M., Huang, J.L., Cheung, C.L., Lieber, C.M.: Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291(5501), 97–100 (2001)

    ADS  Google Scholar 

  155. Scifo, L., Dubois, M., Brun, M., Rannou, P., Latil, S., Rubio, A., Grevin, B.: Probing the electronic properties of self-organized poly(3-dodecylthiophene) monolayers by two-dimensional scanning tunneling spectroscopy imaging at the single chain scale. Nano Lett. 6(8), 1711–1718 (2006)

    ADS  Google Scholar 

  156. Zhao, J., Han, J., Lu, J.P.: Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 65(19), 193401 (2002)

    ADS  Google Scholar 

  157. Giulianini, M., Waclawik, E.R., Bell, J.M., Crescenzi, M.D., Castrucci, P., Scarselli, M., Diociauti, M., Casciardi, S., Motta, N.: Evidence of Multiwall Carbon Nanotube Deformation Caused by Poly(3-hexylthiophene) Adhesion. The Journal of Physical Chemistry C 115(14), 6324-6330 (2011). doi:10.1021/jp2000267

    ADS  Google Scholar 

  158. Kiang, C.H., Endo, M., Ajayan, P.M., Dresselhaus, G., Dresselhaus, M.S.: Size effects in carbon nanotubes. Phys. Rev. Lett. 81(9), 1869 (1998)

    ADS  Google Scholar 

  159. Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., Chan, B.: Radial deformation of carbon nanotubes by van der Waals forces. Nature 364(6437), 514–516 (1993)

    ADS  Google Scholar 

  160. Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Fully collapsed carbon nanotubes. Nature 377(6545), 135–138 (1995)

    ADS  Google Scholar 

  161. Hertel, T., Walkup, R.E., Avouris, P.: Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58(20), 13870 (1998)

    ADS  Google Scholar 

  162. Park, M.H., Jang, J.W., Lee, C.E., Lee, C.J.: Interwall support in double-walled carbon nanotubes studied by scanning tunneling microscopy. Appl. Phys. Lett. 86(2), 023110–023113 (2005). doi:10.1063/1.1851615

    ADS  Google Scholar 

  163. Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., Riedo, E.: Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94(17), 175502 (2005)

    ADS  Google Scholar 

  164. Kelly, B.T.: The Physics of Graphite. Applied Science Publishers, London (2006)

    Google Scholar 

  165. Tahk, D., Lee, H.H., Khang, D.-Y.: Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42(18), 7079–7083 (2009). doi:10.1021/ma900137k

    ADS  Google Scholar 

  166. Gülseren, O., Yildirim, T., Ciraci, S., Kılıç, Ç.: Reversible band-gap engineering in carbon nanotubes by radial deformation. Phys. Rev. B 65(15), 155410 (2002)

    ADS  Google Scholar 

  167. Heo, J., Bockrath, M.: Local electronic structure of single-walled carbon nanotubes from electrostatic force microscopy. Nano Lett. 5(5), 853–857 (2005). doi:10.1021/nl0501765

    ADS  Google Scholar 

  168. Bozovic, D., Bockrath, M., Hafner, J.H., Lieber, C.M., Park, H., Tinkham, M.: Electronic properties of mechanically induced kinks in single-walled carbon nanotubes. Appl. Phys. Lett. 78(23), 3693–3695 (2001)

    ADS  Google Scholar 

  169. Chun, K.-Y., Lee, C.J.: Potassium doping in the double-walled carbon nanotubes at room temperature. J. Phys. Chem. C 112(12), 4492–4497 (2008). doi:10.1021/jp077453b

    Google Scholar 

  170. Wood, J.R., Frogley, M.D., Meurs, E.R., Prins, A.D., Peijs, T., Dunstan, D.J., Wagner, H.D.: Mechanical response of carbon nanotubes under molecular and macroscopic pressures. J. Phys. Chem. B 103(47), 10388–10392 (1999). doi:10.1021/jp992136t

    Google Scholar 

  171. Venkateswaran, U.D., Rao, A.M., Richter, E., Menon, M., Rinzler, A., Smalley, R.E., Eklund, P.C.: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev. B 59(16), 10928 (1999)

    ADS  Google Scholar 

  172. Peters, M.J., McNeil, L.E., Lu, J.P., Kahn, D.: Structural phase transition in carbon nanotube bundles under pressure. Phys. Rev. B 61(9), 5939 (2000)

    ADS  Google Scholar 

  173. Thomsen, C., Reich, S., Jantoljak, H., Loa, I., Syassen, K., Burghard, M., Duesberg, G.S., Roth, S.: Raman spectroscopy on single- and multi-walled nanotubes under high pressure. Appl. Phys. A Mater. Sci. Process. 69(3), 309–312 (1999)

    ADS  Google Scholar 

  174. Rao, A.M., Jorio, A., Pimenta, M.A., Dantas, M.S.S., Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84(8), 1820 (2000)

    ADS  Google Scholar 

  175. Heller, C., Leising, G., Godon, C., Lefrant, S., Fischer, W., Stelzer, F.: Raman excitation profiles of conjugated segments in solution. Phys. Rev. B 51(13), 8107 (1995)

    ADS  Google Scholar 

  176. Bredas, J.L., Street, G.B., Themans, B., Andre, J.M.: Organic polymers based on aromatic rings (polyparaphenylene, polypyrrole, polythiophene): evolution of the electronic properties as a function of the torsion angle between adjacent rings. J. Chem. Phys. 83(3), 1323–1329 (1985). doi:10.1063/1.449450

    ADS  Google Scholar 

  177. Vukmirović, N., Wang, L.-W.: Electronic structure of disordered conjugated polymers: polythiophenes. J. Phys. Chem. B 113(2), 409–415 (2008). doi:10.1021/jp808360y

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. M. De Crescenzi and Prof. J.M. Bell for helpful discussions and direction, Dr. E.R. Waclawik, Dr M. Scarselli, Dr. P. Castrucci, Dr. M. Diociaiuti, Dr. S. Casciardi for helping in the measurements and for their contribution to the discussions, Prof. J.C. Grossman, M. Bernardi for providing their expertise in the molecular dynamics calculations. The authors also acknowledge the financial support of the Queensland Government through the NIRAP project “Solar Powered Nanosensors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Giulianini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giulianini, M., Motta, N. (2012). Polymer Self-assembly on Carbon Nanotubes. In: Bellucci, S. (eds) Self-Assembly of Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0742-3_1

Download citation

Publish with us

Policies and ethics