Skip to main content
Log in

How miRNA Structure of Animals Influences Their Biogenesis

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

MicroRNAs are small noncoding RNAs that are involved in the post-transcriptional regulation of the gene expression in various organisms. This article reviews recent advances in understanding the role of the primary and secondary structures of animal miRNA precursors through the biogenesis stages and the miRNA maturation steps. Also, we describe the effects of genetic variability and heterogeneity of miRNA ends, which play an important role in epitranscriptomics as well as annotation errors in the miRNA databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kutter, C. and Svoboda, P., miRNA, siRNA, piRNA: knowns of the unknown, RNA Biol., 2008, vol. 5, no. 4, pp. 181–188. https://doi.org/10.4161/rna.7227

    Article  CAS  PubMed  Google Scholar 

  2. Lee, Y., Jeon, K., Lee, J.-T., et al., MicroRNA maturation: stepwise processing and subcellular localization, EMBO J., 2002, vol. 21, no. 17, pp. 4663–4670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Brien, J., Hayder, H., Zayed, Y., et al., Overview of microRNA biogenesis, mechanisms of actions, and circulation, Front. Endocrinol., 2018, vol. 9, no. 402, pp. 1–12. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  4. Vidigal, J.A. and Ventura, A., The biological functions of miRNAs: lessons from in vivo studies, Trends Cell Biol., 2015, vol. 25, no. 3, pp. 137–147. https://doi.org/10.1016/j.tcb.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Borchert, G.M., Lanier, W., and Davidson, B.L., RNA polymerase III transcribes human microRNAs, Nat. Struct. Mol. Biol., 2006, vol. 13, no. 12, pp. 1097–1101. https://doi.org/10.1038/nsmb1167

    Article  CAS  PubMed  Google Scholar 

  6. Cai, X., Hagedorn, C.H., and Cullen, B.R., Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA, 2004, vol. 10, no. 12, pp. 1957–1966. https://doi.org/10.1261/rna.7135204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ballarino, M., Pagano, F., Girardi, E., et al., Coupled RNA processing and transcription of intergenic primary microRNAs, Mol. Cell. Biol., 2009, vol. 29, no. 20, pp. 5632–5638. https://doi.org/10.1128/MCB.00664-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marco, A., Ninova, M., and Griffiths-Jones, S., Multiple products from microRNA transcripts, Biochem. Soc. Trans., 2013, vol. 41, no. 4, pp. 850–854. https://doi.org/10.1042/BST20130035

    Article  CAS  PubMed  Google Scholar 

  9. Titov, I.I. and Vorozheykin, P.S., Analysis of miRNA duplication in the human genome and the role of transposon evolution in this process, Russ. J. Genet: Appl. Res., 2011, vol. 1, no. 4, pp. 308–314. https://doi.org/10.1134/S2079059711040083

    Article  Google Scholar 

  10. Chang, T.-C., Pertea, M., Lee, S., et al., Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms, Genome Res., 2015, vol. 25, no. 9, pp. 1401–1409. https://doi.org/10.1101/gr.193607.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scott, H., Howarth, J., Lee, Y.B., et al., MiR-3120 is a mirror microRNA that targets heat shock cognate protein 70 and auxilin messenger RNAs and regulates clathrin vesicle uncoating, J. Biol. Chem., 2012, vol. 287, no. 18, pp. 14726–14733. https://doi.org/10.1074/jbc.M111.326041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abasi, M., Kohram, F., Fallah, P., et al., Differential maturation of miR-17~92 cluster members in human cancer cell lines, Appl. Biochem. Biotechnol., 2017, vol. 182, no. 4, pp. 1540–1547. https://doi.org/10.1007/s12010-017-2416-5

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Luo, J., Zhang, H., et al., MicroRNAs in the same clusters evolve to coordinately regulate functionally related genes, Mol. Biol. Evol., 2016, vol. 33, no. 9, pp. 2232–2247. https://doi.org/10.1093/molbev/msw089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lataniotis, L., Albrecht, A., Kok, F.O., et al., CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function, Sci. Rep., 2017, vol. 7, no. 8585, pp. 1–14. https://doi.org/10.1038/s41598-017-09268-0

    Article  CAS  Google Scholar 

  15. Tong, Z., Cui, Q., Wang, J., et al., TransmiR v2.0: an updated transcription factor-microRNA regulation database, Nucleic Acids Res., 2019, vol. 47, no. D1, pp. D253–D258. https://doi.org/10.1093/nar/gky1023

    Article  CAS  PubMed  Google Scholar 

  16. Ben-Ami, O., Pencovich, N., Lotem, J., et al., A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 1, pp. 238–243. https://doi.org/10.1073/pnas.0811466106

    Article  PubMed  Google Scholar 

  17. Wang, Y., Liang, H., Zhou, G., et al., HIC1 and miR-23~27~24 clusters form a double-negative feedback loop in breast cancer, Cell Death Differ., 2017, vol. 24, no. 3, pp. 421–432. https://doi.org/10.1038/cdd.2016.136

    Article  CAS  PubMed  Google Scholar 

  18. Shalgi, R., Lieber, D., Oren, M., et al., Global and local architecture of the mammalian microRNA–transcription factor regulatory network, PLoS Comput. Biol., 2007, vol. 3, no. 7, pp. 1291–1304. https://doi.org/10.1371/journal.pcbi.0030131

    Article  CAS  Google Scholar 

  19. Barros-Silva, D., Costa-Pinheiro, P., Duarte, H., et al., MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis, Cell Death Dis., 2018, vol. 9, no. 167, pp. 1–15. https://doi.org/10.1038/s41419-017-0241-y

    Article  CAS  Google Scholar 

  20. Munoz-Tello, P., Rajappa, L., Coquille, S., et al., Polyuridylation in eukaryotes: a 3'-end modification regulating RNA life, BioMed Res. Int., 2015, vol. 2015, pp. 1–12. https://doi.org/10.1155/2015/968127

    Article  CAS  Google Scholar 

  21. Zhao, B.S., Roundtree, I.A., and He, C., Post-transcriptional gene regulation by mRNA modifications, Nat. Rev. Mol. Cell Biol., 2017, vol. 18, no. 1, pp. 31–42. https://doi.org/10.1038/nrm.2016.132

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez, N., Cordiner, R.A., Young, R.S., et al., Genetic variation and RNA structure regulate microRNA biogenesis, Nat. Commun., 2017, vol. 8, no. 15114, pp. 1–12. https://doi.org/10.1038/ncomms15114

    Article  Google Scholar 

  23. Nguyen, T.A., Jo, M.H., Choi, Y.-G., et al., Functional anatomy of the human microprocessor, Cell, 2015, vol. 161, no. 6, pp. 1374–1387. https://doi.org/10.1016/j.cell.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Kwon, S.C., Nguyen, T.A., Choi, Y.-G., et al., Structure of human DROSHA, Cell, 2016, vol. 164, nos. 1–2, pp. 81–90. https://doi.org/10.1016/j.cell.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, H.I., Yamagata, K., Sugimoto, K., et al., Modulation of microRNA processing by p53, Nature, 2009, vol. 460, no. 7254, pp. 529–533. https://doi.org/10.1038/nature08199

    Article  CAS  PubMed  Google Scholar 

  26. Connerty, P., Ahadi, A., and Hutvagner, G., RNA binding proteins in the miRNA pathway, Int. J. Mol. Sci., 2015, vol. 17, no. 31, pp. 1–16. https://doi.org/10.3390/ijms17010031

    Article  CAS  Google Scholar 

  27. Treiber, T., Treiber, N., Plessmann, U., et al., A compendium of RNA-binding proteins that regulate microRNA biogenesis, Mol. Cell, 2017, vol. 66, no. 2, pp. 270–284. https://doi.org/10.1016/j.molcel.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  28. Michlewski, G., Guil, S., Semple, C.A., et al., Posttranscriptional regulation of miRNAs harboring conserved terminal loops, Mol. Cell, 2008, vol. 32, no. 3, pp. 383–393. https://doi.org/10.1016/j.molcel.2008.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jean-Philippe, J., Paz, S., and Caputi, M., hnRNP A1: the Swiss army knife of gene expression, Int. J. Mol. Sci., 2013, vol. 14, no. 9, pp. 18999–19024. https://doi.org/10.3390/ijms140918999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michlewski, G. and Cáceres, J.F. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis, Nat. Struct. Mol. Biol., 2010, vol. 17, no. 8, pp. 1011–1018. https://doi.org/10.1038/nsmb.1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trabucchi, M., Briata, P., Garcia-Mayoral, M., et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, 2009, vol. 459, no. 7249, pp. 1010–1014. https://doi.org/10.1038/nature08025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawahara, Y. and Mieda-Sato, A., TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 9, pp. 3347–3352. https://doi.org/10.1073/pnas.1112427109

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu, S.-L., Fu, X., Huang, J., et al., Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme, Nucleic Acids Res., 2015, vol. 43, no. 17, pp. 8516–8528. https://doi.org/10.1093/nar/gkv779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen, T.A., Park, J., Dang, T.L., et al., Microprocessor depends on hemin to recognize the apical loop of primary microRNA, Nucleic Acids Res., 2018, vol. 46, no. 11, pp. 5726–5736. https://doi.org/10.1093/nar/gky248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, K., Nguyen, T.D., Li, S., et al., SRSF3 recruits DROSHA to the basal junction of primary microRNAs, RNA, 2018, vol. 24, no. 7, pp. 892–898. https://doi.org/10.1261/rna.065862.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Viswanathan, S.R. and Daley, G.Q., Lin28: a microRNA regulator with a macro role, Cell, 2010, vol. 140, no. 4, pp. 445–449. https://doi.org/10.1016/j.cell.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  37. Davis, B.N., Hilyard, A.C., Nguyen, P.H., et al., Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha, Mol. Cell, 2010, vol. 39, no. 3, pp. 373–384. https://doi.org/10.1016/j.molcel.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawai, S. and Amano, A., BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex, J. Cell Biol., 2012, vol. 197, no. 2, pp. 201–208. https://doi.org/10.1083/jcb.201110008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, H., Sun, S., Tu, K., et al., A splicing-independent function of SF2/ASF in microRNA processing, Mol. Cell, 2010, vol. 38, no. 1, pp. 67–77. https://doi.org/10.1016/j.molcel.2010.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ha, M. and Kim, V.N., Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol., 2014, vol. 15, no. 8, pp. 509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  41. Auyeung, V.C., Ulitsky, I., McGeary, S.E., et al., Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing, Cell, 2013, vol. 152, no. 4, pp. 844–858. https://doi.org/10.1016/j.cell.2013.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartel, D.P., Metazoan microRNAs, Cell, 2018, vol. 173, no. 1, pp. 20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fromm, B., Domanska, D., Hackenberg, M., et al., MirGeneDB2.0: the curated microRNA Gene Database, 2018. https://doi.org/10.1101/258749

  44. Tang, R., Li, L., Zhu, D., et al., Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system, Cell Res., 2012, vol. 22, no. 3, pp. 504–515. https://doi.org/10.1038/cr.2011.137

    Article  CAS  PubMed  Google Scholar 

  45. Zisoulis, D.G., Kai, Z.S., Chang, R.K., et al., Autoregulation of microRNA biogenesis by let-7 and Argonaute, Nature, 2012, vol. 486, no. 7404, pp. 541–544. https://doi.org/10.1038/nature11134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sundaram, G.M., Common, J.E.A., Gopal, F.E., et al., ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing, Nature, 2013, vol. 495, no. 7439, pp. 103–106. https://doi.org/10.1038/nature11890

    Article  CAS  PubMed  Google Scholar 

  47. Han, J., Pedersen, J.S., Kwon, S.C., et al., Posttranscriptional crossregulation between Drosha and DGCR8, Cell, 2009, vol. 136, no. 1, pp. 75–84. https://doi.org/10.1016/j.cell.2008.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frixa, T., Sacconi, A., Cioce, M., et al., MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration, Carcinogenesis, 2018, vol. 39, no. 2, pp. 293–304. https://doi.org/10.1093/carcin/bgx134

    Article  CAS  PubMed  Google Scholar 

  49. Yi, R., Qin, Y., Macara, I.G., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs, Genes Dev., 2003, vol. 17, no. 24, pp. 3011–3016. https://doi.org/10.1101/gad.1158803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Büssing, I., Yang, J.-S., Lai, E.C., et al., The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila,EMBO J., 2010, vol. 29, no. 11, pp. 1830–1839. https://doi.org/10.1038/emboj.2010.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xie, M., Li, M., Vilborg, A., et al., Mammalian 5'-capped microRNA precursors that generate a single microRNA, Cell, 2013, vol. 155, no. 7, pp. 1568–1580. https://doi.org/10.1016/j.cell.2013.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeng, Y., Structural requirements for pre-microRNA binding and nuclear export by Exportin 5, Nucleic Acids Res., 2004, vol. 32, no. 16, pp. 4776–4785. https://doi.org/10.1093/nar/gkh824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okada, C., Yamashita, E., Lee, S.J., et al., A high-resolution structure of the pre-microRNA nuclear export machinery, Science, 2009, vol. 326, no. 5957, pp. 1275–1279. https://doi.org/10.1126/science.1178705

    Article  CAS  PubMed  Google Scholar 

  54. Bennasser, Y., Chable-Bessia, C., Triboulet, R., et al., Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels, Nat. Struct. Mol. Biol., 2011, vol. 18, no. 3, pp. 323–327. https://doi.org/10.1038/nsmb.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melo, S.A., Moutinho, C., Ropero, S., et al., A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells, Cancer Cell, 2010, vol. 18, no. 4, pp. 303–315. https://doi.org/10.1016/j.ccr.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  56. Singh, C.P., Singh, J., and Nagaraju, J., A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the Exportin-5 cofactor Ran, J. Virol., 2012, vol. 86, no. 15, pp. 7867–7879. https://doi.org/10.1128/JVI.00064-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. MacRae, I.J., Zhou, K., Doudna, J.A., Structural determinants of RNA recognition and cleavage by Dicer, Nat. Struct. Mol. Biol., 2007, vol. 14, no. 10, pp. 934–940. https://doi.org/10.1038/nsmb1293

    Article  CAS  PubMed  Google Scholar 

  58. Lau, P.-W., Guiley, K.Z., De, N., et al., The molecular architecture of human Dicer, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 4, pp. 436–440. https://doi.org/10.1038/nsmb.2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. MacRae, I.J., Structural basis for double-stranded RNA processing by Dicer, Science, 2006, vol. 311, no. 5758, pp. 195–198. https://doi.org/10.1126/science.1121638

    Article  CAS  PubMed  Google Scholar 

  60. MacRae, I.J., Li, F., Zhou, K., et al., Structure of Dicer and mechanistic implications for RNAi, Cold Spring Harbor Symp. Quant. Biol., 2006, vol. 71, pp. 73–80. https://doi.org/10.1101/sqb.2006.71.042

    Article  CAS  PubMed  Google Scholar 

  61. Park, J.-E., Heo, I., Tian, Y., et al., Dicer recognizes the 5' end of RNA for efficient and accurate processing, Nature, 2011, vol. 475, no. 7355, pp. 201–205. https://doi.org/10.1038/nature10198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thornton, J.E., Chang, H.-M., Piskounova, E., et al., Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7), RNA, 2012, vol. 18, no. 10, pp. 1875–1885. https://doi.org/10.1261/rna.034538.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Newman, M.A., Thomson, J.M., and Hammond, S.M., Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, 2008, vol. 14, no. 8, pp. 1539–1549. https://doi.org/10.1261/rna.1155108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bortolamiol-Becet, D., Hu, F., Jee, D., et al., Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase Tailor, Mol. Cell, 2015, vol. 59, no. 2, pp. 217–228. https://doi.org/10.1016/j.molcel.2015.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Starega-Roslan, J., Witkos, T., Galka-Marciniak, P., et al., Sequence features of Drosha and Dicer cleavage sites affect the complexity of isomiRs, Int. J. Mol. Sci., 2015, vol. 16, no. 12, pp. 8110–8127. https://doi.org/10.3390/ijms16048110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heo, I., Ha, M., Lim, J., et al., Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs, Cell, 2012, vol. 151, no. 3, pp. 521–532. https://doi.org/10.1016/j.cell.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  67. Rau, F., Freyermuth, F., Fugier, C., et al., Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy, Nat. Struct. Mol. Biol., 2011, vol. 18, no. 7, pp. 840–845. https://doi.org/10.1038/nsmb.2067

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Y., Zubovic, L., Yang, F., et al., Rbfox proteins regulate microRNA biogenesis by sequence-specific binding to their precursors and target downstream Dicer, Nucleic Acids Res., 2016, vol. 44, no. 9, pp. 4381–4395. https://doi.org/10.1093/nar/gkw177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hellwig, S. and Bass, B.L., A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 35, pp. 12897–12902. https://doi.org/10.1073/pnas.0805118105

    Article  PubMed  PubMed Central  Google Scholar 

  70. Iizasa, H., Wulff, B.-E., Alla, N.R., et al., Editing of Epstein—Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency, J. Biol. Chem., 2010, vol. 285, no. 43, pp. 33358–33370. https://doi.org/10.1074/jbc.M110.138362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gu, S., Jin, L., Zhang, Y., et al., The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo, Cell, 2012, vol. 151, no. 4, pp. 900–911. https://doi.org/10.1016/j.cell.2012.09.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Okamura, K. and Nakanishi, K., Argonaute Proteins, New York: Springer-Verlag, 2018. https://doi.org/10.1007/978-1-4939-7339-2

    Book  Google Scholar 

  73. Pinhal, D., Bovolenta, L.A., Moxon, S., et al., Genome-wide microRNA screening in Nile tilapia reveals pervasive isomiRs’ transcription, sex-biased arm switching and increasing complexity of expression throughout development, Sci. Rep., 2018, vol. 8, no. 8248, pp. 1–18. https://doi.org/10.1038/s41598-018-26607-x

    Article  CAS  Google Scholar 

  74. Suzuki, H.I., Katsura, A., Yasuda, T., et al., Small-RNA asymmetry is directly driven by mammalian Argonautes, Nat. Struct. Mol. Biol., 2015, vol. 22, no. 7, pp. 512–521. https://doi.org/10.1038/nsmb.3050

    Article  CAS  PubMed  Google Scholar 

  75. Wright, D.J., Rice, J.L., Yanker, D.M., et al., Nearest neighbor parameters for inosine—uridine pairs in RNA duplexes, Biochemistry, 2007, vol. 46, no. 15, pp. 4625–4634. https://doi.org/10.1021/bi0616910

    Article  CAS  PubMed  Google Scholar 

  76. Li, L., Song, Y., Shi, X., et al., The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting, Genome Res., 2018, vol. 28, no. 1, pp. 132–143. https://doi.org/10.1101/gr.224386.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berezikov, E., Evolution of microRNA diversity and regulation in animals, Nat. Rev. Genet., 2011, vol. 12, no. 12, pp. 846–860. https://doi.org/10.1038/nrg3079

    Article  CAS  PubMed  Google Scholar 

  78. Hutvagner, G. and Simard, M.J., Argonaute proteins: key players in RNA silencing, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, no. 1, pp. 22–32. https://doi.org/10.1038/nrm2321

    Article  CAS  PubMed  Google Scholar 

  79. Ghildiyal, M., Xu, J., Seitz, H., et al., Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway, RNA, 2010, vol. 16, no. 1, pp. 43–56. https://doi.org/10.1261/rna.1972910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ponomarenko, M.P., Suslov, V.V., Ponomarenko, P.M., et al., Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution, Front. Genet., 2013, vol. 4, pp. 1–13. https://doi.org/10.3389/fgene.2013.00122

    Article  Google Scholar 

  81. Okamura, K., Liu, N., and Lai, E.C., Distinct mechanisms for microRNA strand selection by Drosophila Argonautes, Mol. Cell, 2009, vol. 36, no. 3, pp. 431–444. https://doi.org/10.1016/j.molcel.2009.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shin, C., Cleavage of the star strand facilitates assembly of some microRNAs into Ago2-containing silencing complexes in mammals, Cell, 2008, no. 26, pp. 308–313.

  83. Curtis, H.J., Sibley, C.R., and Wood, M.J.A., Mirtrons, an emerging class of atypical miRNA, Wiley Interdiscip. Rev.: RNA, 2012, vol. 3, no. 5, pp. 617–632. https://doi.org/10.1002/wrna.1122

    Article  CAS  PubMed  Google Scholar 

  84. Ladewig, E., Okamura, K., Flynt, A.S., et al., Discovery of hundreds of mirtrons in mouse and human small RNA data, Genome Res., 2012, vol. 22, no. 9, pp. 1634–1645. https://doi.org/10.1101/gr.133553.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wen, J., Ladewig, E., Shenker, S., Analysis of nearly one thousand mammalian mirtrons reveals novel features of Dicer substrates, PLoS Comput. Biol., 2015, vol. 11, no. 9, pp. 1–29. https://doi.org/10.1371/journal.pcbi.1004441

    Article  CAS  Google Scholar 

  86. Yang, L., Splicing noncoding RNAs from the inside out: splicing noncoding RNAs from the inside out, Wiley Interdiscip. Rev.: RNA, 2015, vol. 6, no. 6, pp. 651–660. https://doi.org/10.1002/wrna.1307

    Article  CAS  PubMed  Google Scholar 

  87. Titov, I.I. and Vorozheykin, P.S., Comparing miRNA structure of mirtrons and non-mirtrons, BMC Genomics, 2018, vol. 19, no. S3, pp. 92–102. https://doi.org/10.1186/s12864-018-4473-8

    Article  CAS  Google Scholar 

  88. Berezikov, E., Liu, N., Flynt, A.S., et al., Evolutionary flux of canonical microRNAs and mirtrons in Drosophila,Nat. Genet., 2010, vol. 42, no. 1, pp. 6–9. https://doi.org/10.1038/ng0110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Havens, M.A., Reich, A.A., Duelli, D.M., et al., Biogenesis of mammalian microRNAs by a non-canonical processing pathway, Nucleic Acids Res., 2012, vol. 40, no. 10, pp. 4626–4640. https://doi.org/10.1093/nar/gks026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abdelfattah, A.M., Park, C., and Choi, M.Y., Update on non-canonical microRNAs, Biomol. Concepts, 2014, vol. 5, no. 4, pp. 275–287. https://doi.org/10.1515/bmc-2014-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stagsted, L.V.W., Daugaard, I., and Hansen, T.B., The agotrons: gene regulators or Argonaute protectors? BioEssays, 2017, vol. 39, no. 4, pp. 1–6. https://doi.org/10.1002/bies.201600239

    Article  CAS  Google Scholar 

  92. Cheloufi, S., Dos Santos, C.O., Chong, M.M.W., et al., A dicer-independent miRNA biogenesis pathway that requires Ago catalysis, Nature, 2010, vol. 465, no. 7298, pp. 584–589. https://doi.org/10.1038/nature09092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cifuentes, D., Xue, H., Taylor, D.W., et al., A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity, Science, 2010, vol. 328, no. 5986, pp. 1694–1698. https://doi.org/10.1126/science.1190809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoda, M., Cifuentes, D., Izumi, N., et al., Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs, Cell Rep., 2013, vol. 5, no. 3, pp. 715–726. https://doi.org/10.1016/j.celrep.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  95. Yang, J.-S., Maurin, T., and Lai, E.C., Functional parameters of Dicer-independent microRNA biogenesis, RNA, 2012, vol. 18, no. 5, pp. 945–957. https://doi.org/10.1261/rna.032938.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wheeler, B.M., Heimberg, A.M., Moy, V.N., et al., The deep evolution of metazoan microRNAs, Evol. Dev., 2009, vol. 11, no. 1, pp. 50–68. https://doi.org/10.1111/j.1525-142X.2008.00302.x

    Article  CAS  PubMed  Google Scholar 

  97. Kolchanov, N.A., Titov, I.I., Vlassova, I.E., et al., Chemical and computer probing of RNA structure, Progr. Nucleic Acid Res. Mol. Biol., 1996, vol. 53, pp. 131–196. https://doi.org/10.1016/S0079-6603(08)60144-0

    Article  CAS  Google Scholar 

  98. Slezak-Prochazka, I., Durmus, S., Kroesen, B.J., et al., MicroRNAs, macrocontrol: regulation of miRNA processing, RNA, 2010, vol. 16, no. 6, pp. 1087–1095. https://doi.org/10.1261/rna.1804410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gong, J., Tong, Y., Zhang, H.-M., et al., Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis, Hum. Mutat., 2012, vol. 33, no. 1, pp. 254–263. https://doi.org/10.1002/humu.21641

    Article  CAS  PubMed  Google Scholar 

  100. Sun, G., Yan, J., Noltner, K., et al., SNPs in human miRNA genes affect biogenesis and function, RNA, 2009, vol. 15, no. 9, pp. 1640–1651. https://doi.org/10.1261/rna.1560209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hill, D.A., Ivanovich, J., Priest, J.R., et al., DICER1 mutations in familial pleuropulmonary blastoma, Science, 2009, vol. 325, no. 5943, pp. 965–965. https://doi.org/10.1126/science.1174334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nishikura, K., A-to-I editing of coding and non-coding RNAs by ADARs, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 2, pp. 83–96. https://doi.org/10.1038/nrm.2015.4

    Article  CAS  PubMed  Google Scholar 

  103. Tomaselli, S., Bonamassa, B., Alisi, A., et al., ADAR enzyme and miRNA story: a nucleotide that can make the difference, Int. J. Mol. Sci., 2013, vol. 14, no. 11, pp. 22796–22816. https://doi.org/10.3390/ijms141122796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kawahara, Y., Zinshteyn, B., Sethupathy, P., et al., Redirection of silencing targets by adenosine-to-inosine editing of miRNAs, Science, 2007, vol. 315, no. 5815, pp. 1137–1140. https://doi.org/10.1126/science.1138050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawahara, Y., Zinshteyn, B., Chendrimada, T.P., et al., RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer–TRBP complex, EMBO Rep., 2007, vol. 8, no. 8, pp. 763–769. https://doi.org/10.1038/sj.embor.7401011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, F., Lu, Y., Yan, S., et al., SPRINT: an SNP-free toolkit for identifying RNA editing sites, Bioinformatics, 2017, vol. 33, no. 22, pp. 3538–3548. https://doi.org/10.1093/bioinformatics/btx473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neilsen, C.T., Goodall, G.J., and Bracken, C.P., IsomiRs—the overlooked repertoire in the dynamic microRNAome, Trends Genet., 2012, vol. 28, no. 11, pp. 544–549. https://doi.org/10.1016/j.tig.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  108. Starega-Roslan, J., Galka-Marciniak, P., and Krzyzosiak, W.J., Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer, Nucleic Acids Res., 2015, vol. 43, no. 22, pp. 10939–10951. https://doi.org/10.1093/nar/gkv968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, S. and Patel, D.J., Drosha and Dicer: slicers cut from the same cloth, Cell Res., 2016, vol. 26, no. 5, pp. 511–512. https://doi.org/10.1038/cr.2016.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ma, M., Yin, Z., Zhong, H., et al., Analysis of the expression, function, and evolution of miR-27 isoforms and their responses in metabolic processes, Genomics, 2018. https://doi.org/10.1016/j.ygeno.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  111. Yu, F., Pillman, K.A., Neilsen, C.T., et al., Naturally existing isoforms of miR-222 have distinct functions, Nucleic Acids Res., 2017, vol. 45, no. 19, pp. 11371–11385. https://doi.org/10.1093/nar/gkx788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Han, B.W., Hung, J.-H., Weng, Z., et al., The 3'-to-5' exoribonuclease nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1, Curr. Biol., 2011, vol. 21, no. 22, pp. 1878–1887. https://doi.org/10.1016/j.cub.2011.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, N., Abe, M., Sabin, L.R., et al., The exoribonuclease nibbler controls 3' end processing of microRNAs in Drosophila,Curr. Biol., 2011, vol. 21, no. 22, pp. 1888–1893. https://doi.org/10.1016/j.cub.2011.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Norbury, C.J., Cytoplasmic RNA: a case of the tail wagging the dog, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 10, pp. 643–653. https://doi.org/10.1038/nrm3645

    Article  CAS  PubMed  Google Scholar 

  115. Tan, G.C. and Dibb, N., IsomiRs have functional importance, Malays J. Pathol., 2015, vol. 37, no. 2, pp. 73–81.

    PubMed  Google Scholar 

  116. McCall, M.N., Kim, M.-S., Adil, M., et al., Toward the human cellular microRNAome, Genome Res., 2017, vol. 27, no. 10, pp. 1769–1781. https://doi.org/10.1101/gr.222067.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ludwig, N., Becker, M., Schumann, T., et al., Bias in recent miRBase annotations potentially associated with RNA quality issues, Sci. Rep., 2017, vol. 7, no. 5162, pp. 1–11. https://doi.org/10.1038/s41598-017-05070-0

    Article  CAS  Google Scholar 

  118. Fromm, B., Billipp, T., Peck, L.E., et al., A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome, Annu. Rev. Genet., 2015, vol. 49, no. 1, pp. 213–242. https://doi.org/10.1146/annurev-genet-120213-092023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hou, D., He, F., Ma, L., et al., The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells, J. Nutr. Biochem., 2018, vol. 57, pp. 197–205. https://doi.org/10.1016/j.jnutbio.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  120. Fromm, B., Kang, W., Rovira, C., et al., Plant microRNAs in human sera are likely contaminants, J. Nutr. Biochem., 2018. https://doi.org/10.1016/j.jnutbio.2018.07.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the state budget project 0324-2019-0040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Vorozheykin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozheykin, P.S., Titov, I.I. How miRNA Structure of Animals Influences Their Biogenesis. Russ J Genet 56, 17–29 (2020). https://doi.org/10.1134/S1022795420010135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420010135

Keywords:

Navigation