Discrete Fourier Transform (DFT)

Recall the DTFT:

X(w) = Z z(n)e 79m,

n=——oo

DTFT is not suitable for DSP applications because

e In DSP, we are able to compute the spectrum only at specific
discrete values of w,

e Any signal in any DSP application can be measured only in
a finite number of points.

A finite signal measured at N points:

0, n <0,
(n) =4 y(n), 0<n<(N-1),
0, n >N,

where y(n) are the measurements taken at N points.
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Sample the spectrum X (w) in frequency so that

_27T

X(k) = X(kAw), Aw= N —
N-1 o
X(k) = )Y ax(n)e >N DFT.
n=0
The inverse DFT is given by:
1 = k
L 2Bl
z(n) =+ > X(k)e*m N
k=0
= = L )
p(n) == ) {Sj z(m)e ﬂm?} /2%
k=0 (m=0
N-1 1 N-1 o __k(m—n)
— x(m) ~ Z e JTTN = x(n)
m=0 k=0 |,
§(m—n)

EE 524, Fall 2004, # 5



The DFT pair:

N-1 )
X(k) = z(n)e 72"N  analysis
n=0
1 v k
r(n) = NZX(]{)GJQWW” synthesis.
k=0

Alternative formulation:

X(k) = x(n)W’m <—V[/:e_j2WTr
n=0
1 N—-1
r(n) = N X (k)W —kn
k=0
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ko_ Schematic

Wi=1 representation
x0) of DFT
. X(k)
WA 2 ;
x(N-1) /L
,‘\>-</ -
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Periodicity of DFT Spectrum

the DFT spectrum is periodic with period NV (which is expected,
since the DTFT spectrum is periodic as well, but with period
27).

Example: DFT of a rectangular pulse:

2(n) = I, 0<n<(N-1),
] 0, otherwise.

N-1
X(k)=Y e ™R = No(k) =
n=0
the rectangular pulse is “interpreted” by the DFT as a spectral
line at frequency w = 0.
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DFT and DTFT of a rectangular pulse (N=5)

x(7z)

signal for DFIT (/N=5)
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Zero Padding

What happens with the DFT of this rectangular pulse if we
increase N by zero padding:

{y(n)} ={x(0),...,x(M — 1),9,0,; .,0 },
N—M positions

where £(0) =--- =x(M — 1) = 1. Hence, DFT is
N-1 o M .
Y(k) = ) yn)e >N =" y(n)e >N
n=0 n=0
B Sin(ﬂ-kTM)e—jﬁk(%_l)
B sin(m4)
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DFT and DTFT of a Rectangular Pulse with
Zero Padding (N = 10, M =5)

x( 71 zero-padded
(72) Sign‘% for DFT (N=10)

1l F

O1 4 o

| Y (&)
5 e -
O 5 10

Remarks:

e Zero padding of analyzed sequence results in
“approximating” its DTFT better,

e /Zero padding cannot improve the resolution of spectral

components, because the resolution is “proportional” to
1/M rather than 1/N,

e Zero padding is very important for fast DFT implementation
(FFT).
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Matrix Formulation of DFT

Introduce the N x 1 vectors

(N —1)

and the N x N matrix

WY WY WY
WY wi W?2
w=| wo w2 W

DFT in a matrix form:
X =We.
Result: Inverse DFT is given by
Tr = iVVHX
N ;
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which follows easily by checking WHW = WW*# = NI, where
I denotes the identity matrix. Hermitian transpose:

Also, "™*" denotes complex conjugation.

Frequency Interval/Resolution: DFT's frequency resolution

1
FresN— H
~7  (HZ]

and covered frequency interval

1
AF =NAFe=7=F [He.

Frequency resolution is determined only by the length of
the observation interval, whereas the frequency interval is
determined by the length of sampling interval. Thus

e Increase sampling rate = expand frequency interval,

e Increase observation time = improve frequency resolution.

Question: Does zero padding alter the frequency resolution?
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Answer: No, because resolution is determined by the length of
observation interval, and zero padding does not increase this

length.

Example (DFT Resolution): Two complex exponentials with
two close frequencies F; = 10 Hz and F5 = 12 Hz sampled
with the sampling interval T" = 0.02 seconds. Consider various
data lengths N = 10,15,30,100 with zero padding to 512

points.

IDFT{E)

FREQUENCY (HZ)

DFT with N = 10 and zero padding to 512 points.
Not resolved: Fy, — F; =2Hz < 1/(NT) =5 Hz.
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FREQUENCY (HZ)

DFT with NV = 15 and zero padding to 512 points.
Not resolved: F, — F; = 2 Hz < 1/(NT) =~
3.3 Hz.

40

35 |-

30|

25 -

IDFT(E)
8

5 o 5
FREQUENCY (HZ)

DFT with N = 30 and zero padding to 512 points.
Resolved: Fy, — Fy =2Hz > 1/(NT) ~ 1.7 Hz.
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MN=100

IDFT(H)

FREQUENCY (HZ)

DFT with N = 100 and zero padding to 512
points. Resolved: F, — F} =2 Hz > 1/(NT) =
0.5 Hz.
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DFT Interpretation Using
Discrete Fourier Series

Construct a periodic sequence by periodic repetition of x(n)
every N samples:

{z(n)} ={...,2(0),...,2(N —1),2(0),...,2(N —1),...}
{w(n)} {w(n)}

The discrete version of the Fourier Series can be written as
~ _ jomkn 1 v jomkn 1 Y —kn
Z(n) = ;Xkej e %:X(k)ej o ;X(k)W ,

where X (k) = NX,. Note that, for integer values of m, we
have

W—kn _ ejZWkWn _ 6j27TT _ W—(k—FmN)n.

As a result, the summation in the Discrete Fourier Series (DFS)
should contain only IV terms:

N—-1

N 2 X (k)e’>™¥  DFS.

z(n) =
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Inverse DFS

The DFS coefficients are given by

N-1
X (k) = Z f(n)e_j%%n inverse DFS.
n=0
Proof.
N-1 N1 N-T )
S et =3 | LS ot | ot
n=0 n=0 p=0
N-1 | Nl )
_ Y 27 L
= X(p){NZeJ N }—X(k)
p=0 < n=0 P
5(p—k)
]
The DFS coefficients are given by
N N-1 )
X(k) = Z Z(n)e 72"~  analysis,
n=0
| N-1 .
r(n) = N ];) X (k)e’*™N  synthesis.
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e DFS and DFT pairs are identical, except that

— DFT is applied to finite sequence xz(n),
— DFS is applied to periodic sequence x(n).

e Conventional (continuous-time) FS vs. DFS

— CFS represents a continuous periodic signal using an
infinite number of complex exponentials,
whereas

— DFS represents a discrete periodic signal using a finite
number of complex exponentials.
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DFT: Properties

Linearity

Circular shift of a sequence: if X (k) = DF7T{x(n)} then
X (k)e 2% = DFT {z((n — m) mod N)}
Also if z(n) = DFT '{X(k)} then
2((n —m) mod N) = DFT X (k)e 927

where the operation mod N denotes the periodic extension
z(n) of the signal x(n):

z(n) = x(nmod N).
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DFT: Circular Shift

nnnnnn tional shift circular shift
' '

L i
B —r (o,
B i

Z_: z((n — m)modN)Wk"

N-1
= Whm Z z((n — m)mod N )Wkrn—m)

n=0



_ ka Zm n —m mOdN)Wk(n m)mod N
— kaX(k),

where we use the facts that Wk(UmedN) — 17kl and that the
order of summation in DFT does not change its result.

Similarly, if X (k) = DF7{x(n)}, then

X ((k —m)modN) = DFT {z(n)e’?™ V' }.

DFT: Parseval’s Theorem

N—-1 N-—-1

Y atmyn) = 3 X(k)Y

n=0 k=0

Using the matrix formulation of the DFT, we obtain

yle = Lypry B Loy
N N
— LYHWWHX_iYHX
N2~ = N
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DFT: Circular Convolution

If X (k) = DFT{x(n)} and Y (k) = DFT {y(n)}, then
X (k)Y (k) =DFT {{z(n)} ® {y(n)}}

Here, ® stands for circular convolution defined by

(z(m)} @ {ym)} = 3 z(m)y((n —m) mod N).

DFT {{z(n)} ® {y(n)}}

= [ZN_lx(m)y((n — m) mod N)]JW’“”

m=0
{z(n)}&{y(n)}

=3 [0S wn — m) mod NYWE?| a(m)

\ 7/

N—1
= Y)Y ax(m)W =X (k)Y (k)
m=0
x (k)
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