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To prove this property, we use the definition of the Fourier transform in ( 4.4.1) 
and differentiate the series term by term with respect to w. Thus we obtain 

dX(w) d [ ~ . ] --- = - L.., x(n)e-Jwn 
dw dw 

n=-oo 

()() d . 
= L x(n)-e-1w11 

dw 
n=-oo 

()() 

= -j L nx(n)e-jwn 

n=-oo 

Now we multiply both sides of the equation by j to obtain the desired result in 
(4.4.58). 

The properties derived in this section are summarized in Table 4.5, which serves 
as a convenient reference. Table 4.6 illustrates some useful Fourier transform pairs 
that will be encountered in later chapters. 

TABLE 4.5 Properties of the Fourier Transform for Discrete-Time Signals 

Property 

Notation 

Linearity 

Time shifting 

Time reversal 

Convolution 

Correlation 

WieneF-Khintchine theorem 

Frequency shifting 

Modulation 

Multiplication 

Differentiation in 

the frequency domain 

Conjugation 

Parseval's theorem 

Time Domain 

x(n) 

X] (11) 

x2(n) 

a1x1 (11) + a2x2(11) 

x(n - k) 

x(-n) 

x1 (n) * x2(n) 

rx1x2 (/) = X1 (/) * Xz(-l) 

rxx (l) 

e.i"'o" x(n) 

x (n) cos won 

x1 (n )x2 (n) 

nx(n) 

x*(n) 

Frequency Domain 

X (w) 

X1 (w) 

X 2 (w) 

a1X1(w) +a2X2(w) 

e-jfvk X (w) 

X(-w) 

X1 (w)X2(w) 

S.qx2 (w) = X1 (w)X2(-w) 

= X1 (w)X2(w) 

[if x 2 (n) is real] 

Sxx (w) 

X(w - wo) 

~X(w+wo)+ ~X(w-wo) 

f,;- f':.,, X1(A.)X2(w -A.)dA. 

X*(-w) 



Lsform in (4.4.1) 
~obtain 

lesired result in 

f.5, which serves 
transform pairs 

'Domain 

:v) 

0 X1(w)X2(-w) 

= X1(w)X2(w) 

is real] 

'o) + ~X(w - wo) 

(),)X2 (w - A,)dA 

iw 

TABLE 4.6 
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Some Useful Fourier Transform Pairs for Discrete-Time Aperiodic Signals 

Signal x(n) Spectrum X(w) 

. . . '! . . . . . . . " ~----1~1 ___ ~__,._ w 
-3 -2 -1 0 1 2 3 
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n' n =O 
x(n) = sin wen 

----y:m-• n7'0 

• • • " n 

{
a" 

x(n) = O,' 
nc:_O 

11 > 0 

-rr rr 

X(rr) = 1 

...... ' ., lV 

rr 

X(w) 

11 

---~--~-~-----· w 
-rr -(J)(' 0 We 

{ 
1, lwl <WC 

X(w)= 
0, %s; lwl s; rr 

X(w) = - 1-. 1-ae-J<•) 

Summary and References 

The Fourier series and the Fourier transform are the mathematical tools for analyzing 
the characteristics of signals in the frequency domain. The Fourier series is appro­
priate for representing a periodic signal as a weighted sum of harmonically related 
sinusoidal components, where the weighting coefficients represent the strengths of 
each of the harmonics, and the magnitude squared of each weighting coefficient rep­
resents the power of the corresponding harmonic. As we have indicated, the Fourier 
series is one of many possible orthogonal series expansions for a periodic signal. Its 
importance stems from the characteristic behavior of LTI systems, as we shall see in 
Chapter 5. 

The Fourier transform is appropriate for representing the spectral characteris­
tics of aperiodic signals with finite energy. The important properties of the Fourier 
transform were also presented in this chapter. 

There are many excellent texts on Fourier series and Fourier transforms. For 
reference, we include the texts by Bracewell (1978), Davis (1963), Dym and McKean 
(1972), and Papoulis (1962). 
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where, by definition, 

Xe(n) = x~(n) + Jx1(n) = ~[x(n) +x*(-n)] 

x 0 (n) = x~(n) + jxf(n) = ~[x(n) - x*(-n)] 

The superscripts e and o denote the even and odd signal components, respectively. 
We note that Xe(n) = Xe(-n) and x0 (-n) = -x0 (n). From (4.4.36) and the Fourier 
transform properties established above, we obtain the following relationships: 

x(n) = [x~(n) + Jx[(n)] + [x~(n) + jx/(n)] = Xe(n) + xo(n) 

1 1 >< ! 1 
X(w) = [X%(w) + JX[(w)] + [X~(w) - JX/(w)] = Xe(w) + X0 (w) ( 4.4.37) 

These symmetry properties of the Fourier transform are summarized in Table 4.4 
and in Fig 4.4.2. They are often used to simplify Fourier transform calculations in 
practice. 

TABLE 4.4 Symmetry Properties of the Discrete-Time Fourier Transform 

Sequence DTFT 
x(n) X(w) 

x*(n) 

x*(-n) 

XR(n) 

jx1 (n) 

Xe(n) = Hx(n) +x*(-11)] 

x 0 (11) = Hx(n) -x*(-n)] 

Any real signal 

x(n) 

Xe(n) = Hx(n) + x(-n)] 

(real and even) 

x 0 (n) = Hx(11)-x(-n)] 

(real and odd) 

Real Signals 

X*(-w) 

X*(w) 

Xe(w) = HX(w) + X*(-w)) 

X 0 (w) = HX(w) - X*(-w)] 

XR(w) 

jX1(w) 

X(w) = X*(-w) 

XR(w) = XR(-w) 

X1(w) = -X1(-w) 

IX(w)I = iX(-w)I 

4X(w) = -4X(-w) 

XR(W) 

(real and even) 

jX1(w) 

(imaginary and odd) 



=nts, respectively. 
) and the Fourier 
~lationships: 

( 4.4.37) 

rized in Table 4.4 
·m calculations in 

nsform 

+ X*(-w)] 

- X*(-w)] 

) 

o) 

'(-w) 

R(-w) 

<1(-w) 

~ (-w)I 

1.-X(-w) 

) 

~ven) 

1) 

nd odd) 
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Time domain Frequency domain 

Even Even 
Real 1-------1 1-------1 Real 

Odd Odd 

Signal Fourier Transform 

Odd Odd 
Imaginary 1-----~1------"------>-~----_..j Imaginary 

Even Even 

Figure 4.4.2 Summary of symmetry properties for the Fourier transform. 

EXAMPLE 4.4.1 

Determine and sketch XR(w), X 1 (w), IX(w)I, and 4X(w) for the Fourier transform 

1 
X(w) = l . , - ae-1w 

-1 <a < 1 ( 4.4.38) 

Solution. By multiplying both the numerator and denominator of ( 4.4.38) by the complex 
conjugate of the denominator, we obtain 

X(w) = ------­
(1 - ae-iw)(l - aei"') 

1 - a cos w - j a sin w 

1 - 2a cos w + a2 

This expression can be subdivided into real and imaginary parts. Thus we obtain 

1- acosw 
XR(w) = ------

1 - 2a cos w + a2 

asinw 
1 - 2a cos w + a2 

Substitution of the last two equations into ( 4.4.15) and ( 4.4.16) yields the magnitude and 
phase spectra as 

and 

1 
IX(w)I = -;=====~ Jl - 2a cosw + a2 

asinw 
4X(w) = -tan-1 

----
1- acosw 

( 4.4.39) 

( 4.4.40) 

Figures 4.4.3 and 4.4.4 show the graphical representation of these spectra for a = 0.8. 
The reader can easily verify that as expected, all symmetry properties for the spectra of real 
signals apply to this case. 


