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Abstract

Inthispaper by considering deltafunction sextupol eand oc-
tupol e perturbationsand using difference action-anglevari-
ableequations, analytical formulaefor the dynamic aperture
of circular accelerators are derived based on the Chirikov
criterion of the onset of stochastic motions.

1 INTRODUCTION

Oneof the preoccupationsof thecircul ar accel erator design-
ers is to estimate the influence of nonlinear forces on the
single particle’s motion. Even though the nonlinear forces
compared with the linear ones are usually very small, what
is observed in redlity, however, isthat when the amplitudes
of the transverse oscillation of a particle are large enough,
the transverse moti ons might become unstableand the parti-
cleitsalf will finally belost on the vacuum chamber. Inthe
following sections we will show how the nonlinear forces
limit the dynamic aperturesand what istherel ation between
them.

2 DYNAMIC APERTURESDUE TO
NONLINEAR RESONANCESAND
STOCHASTIC MOTIONS

In thissection anecessary distinctionwill be made between
two essentially different cases: a proton machine and an
electron one. Thereason issimple. In thefirst case thereis
no dissipative forces (which is generally true) and the par-
ticle'smotion can be described in the frame of Hamiltonian
system. In the second case, however, one has to take into
account of the synchrotron radiation damping effect.

2.1 Proton storagering

To start with we consider the linear horizontal motion of a
particle assuming that the magnetic field is only transverse
and there are no screw fields. The Hamiltonian can be ex-
pressed as
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where « denotes normal plane coordinate, p = d«/ds, and

K (s) isaperiodic function satisfying the relation

K(s) = K(s+ L) )

where L isthe circumference of thering. The solution of
the deviation, =, isfound to be
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where
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Asan essentia step towards further discussion on the mo-
tions under nonlinear perturbation forces, we introduce
action-angle variables and the Hamiltonian expressed in
these new variables[1]:
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Sincethe H (J, ¥) = J/3.(s) isstill afunction of theinde-
pendent variable, s, we will make another canonica trans-
formation to freeze the new Hamiltonian:
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Beforegoingonfurther, let’ sremember therel ation between
the last action-angle variables and the particle deviation x:
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Having well prepared we start our journey to find out the
limitations of the nonlinear forces on the stability of the
particle’s motion. To fecilitate the analytical trestment of
thiscomplicated problemwe consider at thisstage only sex-
tupoles and octupol es (no screw terms) and assume that the
contributions from the sextupoles and octupoles in aring
can be made equivalent to a point sextupol e and a point oc-
tupole. The perturbed Hamiltonian can be thus expressed:
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where p istheradius of curvature. Representing eq. 12 by
action-anglevariables (J; and ¥,), and using

B, = Bo(l + by + x2by + l‘?’b?,) (13)
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one has
3/2 >
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wheres; and s, arejust used to differentiatethel ocations of
the sextupole and the octupole perturbations. By virtue of
Hamiltonian one getsthe differential equationsfor ¥, and
J1
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Now itisthemoment to changethisdifferentia equationsto
thedifference equationswhichissuitableto analyse the pos-
sibilities of the onset of stochasticity [2][3]. Since the per-
turbationshave anatural periodicity of 7. wewill samplethe
dynamic quantities at a sequence of s; with constant inter-
val L assuming that the characteristic time between two con-
secutive adiabatic invariance breakdown intervasis shorter
than L/c. The differentid equationsin egs. 17 and 18 are
reduced to

Ji=Ji(¥y, ) (29)

U, =V, (¥, ) (20)

wherethebar standsfor the next sampled va ue after the cor-
responding unbared previousvalue, or explicitly,
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Egs. 21 and 22 are the basic difference equations to study
the nonlinear resonance and the onset of stochasticitiescon-
sidering sextupole and octupole perturbations. By using
trigonometricrelation

m
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one has )
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Apparently, the right hand sides of egs. 21 and 22 contain
sinusoidal functions of phases, ¥, 2V, 3¥,, and 4¥,.
If the tune v is far from the resonance linesv = m/n,
where m and n are integers (n=1, 2, 3, and 4 for this spe-
cific problem), the invariant tori of the unperturbed motion
are preserved under the presence of the small perturbations
by virtue of the Kolmogorov-Arnold-Moser (KAM) theo-
rem. If, however, v is close to the above mentioned reso-
nance line, the situation is getting complicated and under
some conditionsthe KAM invariant tori can bebroken. Tek-
ing the third order resonance, m/3, for example, we keep
only the sinusoidal function with phase 3%, in eg. 21 and
the dominant phase independent nonlinear term in eq. 22,
and as the result, we have egs. 21 and 22 reduced to

J_lz Jl —|—ASiH3\IJ1 (26)
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with )
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where we have dropped the constant phasein eg. 22. Itis
helpful to transform egs. 28 and 29 into the form so-called
standard mapping [3] expressed as

T=1I+ Kysinf (30)

withd = 3¥, I = 3BJ, and Ky = 3AB. By virtue of the
Chirikov criterion [3] itisknown that when | K| > 0.97164
[4] stochastic motionswill appear and the diffusionwill oc-
cur. Therefore,

Ky

<1 (32)

can be taken as a natura criterion for the determination of
the dynamic aperture of the machine. Putting egs. 28 and
29into eg. 32, one gets
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and consequently, one finds maximum J; corresponding to
m/3 resonance

2/3
J < J = V2" /
b a3 T Glbyba|B2(59) B (51)312 L2

(34)
The dynamic aperture of the machine istherefore
Adyn,m/B = 2Jmax,m/36x (5)
16p% B, (s)/* v 3
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Eq. 35 gives the dynamic aperture of a sextuple and oc-
tupol e strength determined case which isbeieved tobetrue
for the most small emittance el ectron storage rings. Obvi-
oudly, the dynamic aperture scales with the one third power
of the sextupole and the octupole strength, respectively. If
in astoragering the perturbation from the sextupol es can be
omitted, in a similar way one finds the maximum .J; corre-
sponding to m /4 resonance mode

2p
3PS ree—— 36
\/gﬁx(82)2L|b3| ( )

and the corresponding dynamic aperture

Ji < Jmax,m/4 =

4px (5) ) 12
V3B (s2)2L1bs]
(37)
From eq. 37 onereadsthat the dynamic aperture, A gy, /4,
is proportional to the sguare root of the octupole strength.
Usually, one has A gy 1m/s < Adyn,m/a-

Now | would like to spend some inks on the scenario of
those particles whose motions do not satisfy the condition
givenby eq. 32. Onceaparticlebeginsto execute stochastic
motion the phase mixing occurs, and the mapping given by
egs. 30 and 31 can beregarded asaMarkov process[5], and
in consequence, thepossibility distributionfunction F (s, I)
satisfies the Fokker-Planck equation:

OF _ O(AF) | 1*(DF)
ds oI 2 9I?

where A =<< AT >> /L, D =<< (AI)? >> /L,and
thenotation << >> denotestheaverage over phased. From
eq. 30 oneknows A/ = Kysiné, and obviously, one has
A=0andD = K2/(2L). Duetothediffusion, needlessto
say, theamplitude of the particle’smotionisincreasing with
the distance and finaly the particle is lost on the vacuum
chamber wall.

Adyn,m/él = 2Jmax,m/4ﬁx(5) = (

(39)

2.2 Electron storagering

Inan electron storagering the physical pictureismore com-
plicated due to the synchrotron radiation damping. To treat
this problem let’s resort to the so-called standard dissipa-
tive mapping [2] which is different but similar to the stan-
dard mapping shown in egs. 30 and 31, and expressed as

follows: B
I =exp(=T)I + Kqpusinf (39)
G=0+1T (40)
wheeI' = 2L, 7, is the damping time of the beta-

tron oscillation in the horizontal di rection,and p = (1 —
exp(—T))/I'. Apparently, whenT' — 0, egs. 39 and 40 re-
turn to the standard mapping given by egs. 30 and 31. The
criterion for avoiding the onset of the stochastic motionin
the dissipative system is given by

ko] < 1 (41)

The expressions for the dynamic apertures of the electron
storage rings corresponding to the two expressions for the
proton ones derived in the previous subsection are

Adynym/S = 2Jmax’m/3ﬁx(5)
_ ( L6p° 3 (5)°/* )1/3 (42)
9pa|b2bs3 |52 (s2) B (51)3/2 L2
and
_ _ 4pPe(s) i
Adyn,m/‘l = 2Jmax,m/4ﬁx(5) - (\/gﬁx(SZ)zL/'L|b3|
(43)

Eq. 42 has been compared with the numerical dynamic
aperture simulation resultsof ALLADIN [6] and KEK Pho-
ton Factory [7], and the satisfactory comparison results are
showninref. 8.

3 CONCLUSION

Considering delta function sextupole and octupole pertur-
bations, analytical expression for the dynamic aperture of
acircular machine is obtained by using the Chirikov crite-
rion. It is shown that when the dynamics aperture is sex-
tupole and octupole strength determined which is true for
the most cases the dynamic aperture inversely scales with
the one third power of the sextupole and octupol e strength,
respectively. The author thanks J. Le Duff for discussions.
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