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Abstract

In this paper by considering delta function sextupole and oc-
tupole perturbations and using difference action-angle vari-
able equations, analytical formulae for the dynamic aperture
of circular accelerators are derived based on the Chirikov
criterion of the onset of stochastic motions.

1 INTRODUCTION

One of the preoccupations of the circular accelerator design-
ers is to estimate the influence of nonlinear forces on the
single particle’s motion. Even though the nonlinear forces
compared with the linear ones are usually very small, what
is observed in reality, however, is that when the amplitudes
of the transverse oscillation of a particle are large enough,
the transverse motions might become unstable and the parti-
cle itself will finally be lost on the vacuum chamber. In the
following sections we will show how the nonlinear forces
limit the dynamic apertures and what is the relation between
them.

2 DYNAMIC APERTURES DUE TO
NONLINEAR RESONANCES AND

STOCHASTIC MOTIONS

In this section a necessary distinction will be made between
two essentially different cases: a proton machine and an
electron one. The reason is simple. In the first case there is
no dissipative forces (which is generally true) and the par-
ticle’s motion can be described in the frame of Hamiltonian
system. In the second case, however, one has to take into
account of the synchrotron radiation damping effect.

2.1 Proton storage ring

To start with we consider the linear horizontal motion of a
particle assuming that the magnetic field is only transverse
and there are no screw fields. The Hamiltonian can be ex-
pressed as

H =
p2

2
+

K(s)

2
x2 (1)

where x denotes normal plane coordinate, p = dx=ds, and
K(s) is a periodic function satisfying the relation

K(s) = K(s + L) (2)

where L is the circumference of the ring. The solution of
the deviation, x, is found to be

x =
p
�x�x(s) cos(�(s) + �0) (3)

where

�(s) =

Z
s

0

ds

�x(s)
(4)

As an essential step towards further discussion on the mo-
tions under nonlinear perturbation forces, we introduce
action-angle variables and the Hamiltonian expressed in
these new variables [1]:
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Z
s

0

ds0

�x(s0)
+ �0 (5)

J =
�x
2

=
1

2�x(s)

 
x2 +

�
�x(s)x

0
�

�0
x
x

2

�2!
(6)

H(J;	) =
J

�x(s)
(7)

Since theH(J;	) = J=�x(s) is still a function of the inde-
pendent variable, s, we will make another canonical trans-
formation to freeze the new Hamiltonian:

	1 = 	+
2��

L
�

Z s

0

ds0

�x(s0)
(8)

J1 = J (9)

H1 =
2��

L
J1 (10)

Before going on further, let’s remember the relation between
the last action-angle variables and the particle deviation x:

x =
p
2J1�x(s) cos

�
	1 �

2��

L
s+

Z
s

0

ds0

�x(s0)

�
(11)

Having well prepared we start our journey to find out the
limitations of the nonlinear forces on the stability of the
particle’s motion. To facilitate the analytical treatment of
this complicated problem we consider at this stage only sex-
tupoles and octupoles (no screw terms) and assume that the
contributions from the sextupoles and octupoles in a ring
can be made equivalent to a point sextupole and a point oc-
tupole. The perturbed Hamiltonian can be thus expressed:

H =
p2

2
+

K(s)

2
x2 +

1

3!B�

@2Bz

@x2
x3L

1X
k=�1

�(s � kL)

+
1

4!B�

@3Bz

@x3
x4L

1X
k=�1

�(s � kL) (12)

where � is the radius of curvature. Representing eq. 12 by
action-angle variables (J1 and 	1), and using

Bz = B0(1 + xb1 + x2b2 + x3b3) (13)

0-7803-5573-3/99/$10.00@1999 IEEE. 1815

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



one has

H =
2��

L
J1+

(2J1�x(s1))
3=2

3�
b2L cos3	1

1X

k=�1

�(s�kL)

+
(J1�x(s2))2

�
b3L cos4	1

1X

k=�1

�(s � kL) (14)

where s1 and s2 are just used to differentiate the locations of
the sextupole and the octupole perturbations. By virtue of
Hamiltonian one gets the differential equations for 	1 and
J1

dJ1
ds

= � @H
@	1

(15)

d	1

ds
=

@H
@J1

(16)

dJ1
ds

= � (2J1�x(s1))3=2

3�
b2L

d cos3	1

d	1

1X
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� (J1�x(s2))
2

�
b3L

d cos4	1

d	1

1X

k=�1

�(s � kL) (17)

d	1
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2��

L
+

2�2x(s2)

�
J1b3L cos4	1

1X

k=�1

�(s � kL)

+

p
2J

1=2
1

�x(s1)
3=2

�
b2L cos3	1

1X

k=�1

�(s � kL) (18)

Now it is the moment to change this differential equations to
the difference equations which is suitable to analyse the pos-
sibilities of the onset of stochasticity [2][3]. Since the per-
turbations have a natural periodicityofLwe will sample the
dynamic quantities at a sequence of si with constant inter-
valL assuming that the characteristic time between two con-
secutive adiabatic invariance breakdown intervals is shorter
than L=c. The differential equations in eqs. 17 and 18 are
reduced to

J1 = J1(	1; J1) (19)

	1 = 	1(	1; J1) (20)

where the bar stands for the next sampled value after the cor-
responding unbared previous value, or explicitly,

J1 = J1 � (2J1�x(s1))
3=2

3�
b2L

d cos3	1

d	1

� (J1�x(s2))
2

�
b3L

d cos4	1

d	1

(21)

	1 = 	1 + 2�� +

p
2�x(s1)3=2J1

1=2

�
b2L cos3	1

+
2�x(s2)2

�
J1b3L cos4	1 (22)

Eqs. 21 and 22 are the basic difference equations to study
the nonlinear resonance and the onset of stochasticities con-
sidering sextupole and octupole perturbations. By using
trigonometric relation

cosm � cos n� = 2�m
mX

r=0

m!

(m � r)!r!
cos(n�m + 2r)�

(23)
one has

cos3 � =
2

23
(cos 3� + 3 cos �) (24)

cos4 � =
1

24
(cos 4� + 4 cos 2� +

4!

((4=2)!)2
) (25)

Apparently, the right hand sides of eqs. 21 and 22 contain
sinusoidal functions of phases, 	1, 2	1, 3	1, and 4	1.
If the tune � is far from the resonance lines � = m=n,
where m and n are integers (n=1, 2, 3, and 4 for this spe-
cific problem), the invariant tori of the unperturbed motion
are preserved under the presence of the small perturbations
by virtue of the Kolmogorov-Arnold-Moser (KAM) theo-
rem. If, however, � is close to the above mentioned reso-
nance line, the situation is getting complicated and under
some conditions the KAM invariant tori can be broken. Tak-
ing the third order resonance, m=3, for example, we keep
only the sinusoidal function with phase 3	1 in eq. 21 and
the dominant phase independent nonlinear term in eq. 22,
and as the result, we have eqs. 21 and 22 reduced to

J1 = J1 + A sin 3	1 (26)

	1 = 	1 +BJ1 (27)

with

A =
(J1�x(s1))3=2p

2�
b2L (28)

B =
3�x(s2)2

4�
b3L (29)

where we have dropped the constant phase in eq. 22. It is
helpful to transform eqs. 28 and 29 into the form so-called
standard mapping [3] expressed as

I = I +K0 sin � (30)

� = � + I (31)

with � = 3	, I = 3BJ1 and K0 = 3AB. By virtue of the
Chirikovcriterion [3] it is known that when jK0j � 0:97164
[4] stochastic motions will appear and the diffusion will oc-
cur. Therefore,

jK0j � 1 (32)

can be taken as a natural criterion for the determination of
the dynamic aperture of the machine. Putting eqs. 28 and
29 into eq. 32, one gets

jK0j = 9

4
p
2
jb2b3j�2x(s2)�3=2x (s1)J

3=2
1

L2

�2
� 1 (33)

1816

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



and consequently, one finds maximum J1 corresponding to
m=3 resonance

J1 � Jmax;m=3 =

 
4
p
2�2

9jb2b3j�2x(s2)�x(s1)3=2L2

!2=3

(34)
The dynamic aperture of the machine is therefore

Adyn;m=3 =
q
2Jmax;m=3�x(s)

=

�
16�2�x(s)

3=2

9jb2b3j�2x(s2)�x(s1)3=2L2

�1=3

(35)

Eq. 35 gives the dynamic aperture of a sextuple and oc-
tupole strength determined case which is believed to be true
for the most small emittance electron storage rings. Obvi-
ously, the dynamic aperture scales with the one third power
of the sextupole and the octupole strength, respectively. If
in a storage ring the perturbation from the sextupoles can be
omitted, in a similar way one finds the maximum J1 corre-
sponding to m=4 resonance mode

J1 � Jmax;m=4 =
2�p

3�x(s2)2Ljb3j
(36)

and the corresponding dynamic aperture

Adyn;m=4 =
q
2Jmax;m=4�x(s) =

�
4��x(s)p

3�x(s2)2Ljb3j

�1=2

(37)
From eq. 37 one reads that the dynamic aperture,Adyn;m=4,
is proportional to the square root of the octupole strength.
Usually, one has Adyn;m=3 < Adyn;m=4.

Now I would like to spend some inks on the scenario of
those particles whose motions do not satisfy the condition
given by eq. 32. Once a particle begins to execute stochastic
motion the phase mixing occurs, and the mapping given by
eqs. 30 and 31 can be regarded as a Markov process [5], and
in consequence, the possibilitydistributionfunctionF(s; I)
satisfies the Fokker-Planck equation:

@F
@s

= �@(AF)
@I

+
1

2

@2(DF)
@I2

(38)

where A =<< �I >> =L, D =<< (�I)2 >> =L, and
the notation<<>> denotes the average over phase �. From
eq. 30 one knows �I = K0sin�, and obviously, one has
A = 0 andD = K2

0
=(2L). Due to the diffusion, needless to

say, the amplitude of the particle’s motion is increasing with
the distance and finally the particle is lost on the vacuum
chamber wall.

2.2 Electron storage ring

In an electron storage ring the physical picture is more com-
plicated due to the synchrotron radiation damping. To treat
this problem let’s resort to the so-called standard dissipa-
tive mapping [2] which is different but similar to the stan-
dard mapping shown in eqs. 30 and 31, and expressed as

follows:
I = exp(��)I +K0� sin � (39)

� = � + I (40)

where � = 2L
�xc

, �x is the damping time of the beta-
tron oscillation in the horizontal direction, and � = (1 �
exp(��))=�. Apparently, when �! 0, eqs. 39 and 40 re-
turn to the standard mapping given by eqs. 30 and 31. The
criterion for avoiding the onset of the stochastic motion in
the dissipative system is given by

j�K0j � 1 (41)

The expressions for the dynamic apertures of the electron
storage rings corresponding to the two expressions for the
proton ones derived in the previous subsection are

Adyn;m=3 =
q
2Jmax;m=3�x(s)

=

�
16�2�x(s)3=2

9�jb2b3j�2x(s2)�x(s1)3=2L2

�1=3

(42)

and

Adyn;m=4 =
q
2Jmax;m=4�x(s) =

�
4��x(s)p

3�x(s2)2L�jb3j

�1=2

(43)
Eq. 42 has been compared with the numerical dynamic
aperture simulation results of ALLADIN [6] and KEK Pho-
ton Factory [7], and the satisfactory comparison results are
shown in ref. 8.

3 CONCLUSION

Considering delta function sextupole and octupole pertur-
bations, analytical expression for the dynamic aperture of
a circular machine is obtained by using the Chirikov crite-
rion. It is shown that when the dynamics aperture is sex-
tupole and octupole strength determined which is true for
the most cases the dynamic aperture inversely scales with
the one third power of the sextupole and octupole strength,
respectively. The author thanks J. Le Duff for discussions.
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