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Abstract. The Localizable entanglement(LE), suggested by Verstraete(2004), is a measure of multipar-
tite entanglement which is into pairwise entanglement between two spins. The property of the LE is that
the tightly lower bound of the LE measured by the concurrence is the maximal correlation function be-
tween two parties, which implies that LE can detect the many-body physics more subtly than the maximal
correlation function does. Generally speaking, it is non-trivial to calculate LE numerically due to the
difficulty for the optimal choices of measurement bases. Here, a new approach is proposed to overcome a
limited number of parties, which is analogous to the variational matrix product states(VMPS) method.
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1 Definition of the localizable entangle-
ment

Let us consider a pure state |ψ〉 of N spins. Then,
the localizable entanglement (LE) is defined as the
maximal amount of averaged entanglement that can be
created or localizable between the spins i and j by per-
forming local measurements on the other spins. Note
that the remaining spins are locally measured rather than
traced out. To be more specific, every measurement M
specifies a state ensemble EM := {ps, |ψij

s 〉}. Here, ps de-
notes the probability to obtain the (normalized) two-spin
state |ψij

s 〉 for the outcome {s} of the measurements on
the N − 2 remaining spins.
The average entanglement for a specific M is

LM,E
i,j (|ψ〉) :=

∑
s

psE(|ψij
s 〉), (1)

where E(|ψ〉ijs ) is the entanglement of |ψ〉ijs .
The localizable entanglement is defined as the largest
possible average entanglement,

LC,Ei,j (|ψ〉) := sup
M∈C

∑
s

psE(|ψij
s 〉), (2)

with C denoting the class of allowed measurements. The
measurement M which maximizes the average entangle-
ment is called the optimal basis.[?]

2 The physical properties of the LE

The one of the main properties in the LE is that the
tightly lower bound of the localizable entanglement, mea-
sured by the concurrence, is the maximal correlation
function,

max
~a,~b
|Qij

AB(|ψ〉)| ≤ LC
i,j(|ψ〉), (3)

Qij
AB(|ψ〉) ≡ tr[ρ(Si

A ⊗ S
j
B)]− tr[ρ(Si

A ⊗ I)]tr[ρ(I ⊗ Sj
B)].
(4)
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Here, we parametrize the operator SA ≡ ~a · ~σ and SB ≡
~b ·~σ with the vector ~σ ≡ (σx, σy, σz) and the unit vectors

~a and ~b represent the direction in a 3D real space. It is
similar that the entanglement length ξE defined just as
the correlation length ξC from the correlation function is
always larger than the correlation length[?]. Due to the
choice of the optimal basis, the localizable entanglement
LC
i,i+1 exhibit a discontinuity at the critical point ∆ = −1

for 1D XXZ model.

3 The LE measured by the concurrence

By the definition of the localizable entanglement, any
measure of bipartite entanglement can be a proper can-
didate. Among these entanglemt measures, we select the
concurrence because its definition becomes concise in the
case of the two-qubit pure states, Hence, we confine the
conditions of the many-body state to the pure one for the
two-level systems. In general, a pure state for two-level
systems can be expressed as

|ψ〉 =
∑

s1,s2,··· ,sN

cs1s2···sN |s1s2 · · · sN 〉, (5)

with sl ∈ {0, 1} for all l ≤ N and the |sl〉 are in the
σz basis, which is now regarded as the computational
basis. Alternatively, we can utilize the matrix prod-
uct states(MPS) language, approximately represents the
many-body ground states,

|ψ〉 =
∑

s1,s2,··· ,sN

Tr [As1
1 A

s2
2 · · ·A

sN
N ] |s1s2 · · · sN 〉, (6)

where Asl
l is the D ×D matrices. This MPS acounts for

periodic boundary condsitions(PBC).
Moreover, the local measurement must be performed

on the remaining spins and we are going to use the pro-
jective measurement, also called the von Neumann mea-
surement M = {|+〉〈+|, |−〉〈−|}, that are performed on



the lth spin in the basis,

|+〉 ≡
∑
sl

u+

sl
|sl〉 = cos(θl/2)|0〉+ eiϕl sin(θl/2)|1〉 (7)

|−〉 ≡
∑
sl

u−sl |sl〉 = −e−iϕl sin(θl/2)|0〉+ cos(θl/2)|1〉.

(8)

After the projective measurements on spins except ithe
and jth spins, the number of measurement outcomes
is dN−2 and all the possible outcomes are denoted by
m := {m1m2 . . .mi−1mi+1 . . .mj−1mj+1 . . .mN} with
ml ∈ {+,−}. The post-measurement state becomes

|φijm〉 ≡ 〈m|ψ〉

=
∑
si,sj

∑
m

Tr
[
Ām1

1 · · · Āmi−1

i−1 Asi
i Ā

mi+1

i+1 · · ·A
sj
j · · · Ā

mN

N

]
|sisj〉,

where

|m〉 = |m1m2 . . .mi−1mi+1 . . .mj−1mj+1 . . .mN 〉 (9)

=
∑

{sl}l 6=i,j

um1
s1 · · ·u

mi−1
si−1

umi+1
si+1

· · ·umj−1
sj−1

umj+1
sj+1

· · ·umN
sN

(10)

|s1 · · · si−1si+1 · · · sj−1sj+1 · · · sN 〉,

and Āml ≡
∑
sl

Asl
(
uml
sl

)∗ |sl〉 (11)

If the post-measurement state is simply |φijm〉 = a|00〉 +
b|01〉 + c|10〉 + d|11〉, one can easily calculate the con-
currence as C(|φijm〉) = 2|ad − bc|. With these no-
tations, the localizable entanglement can be calcu-
lated by optimizing the averaged concurrence L̄M,C

i,j =∑
m pmC

(
|φijm〉/

√
pm

)
with respect to the matrices uml

sl
for all l ≤ N but i and j. For instance, when N = 3
GHZ state |GHZ〉 is given, LM,C

1,2 (|GHZ〉) = 1, whereas
C1,2(|GHZ〉) = 0.

4 The new approach and the result

In general, it is not straightforward to calculate the lo-
calizable entanglement. Especially when the number of
spins is large. As the spins number increases, it is hard
to evaluate the optimization problem in the definition of
the localizable entanglement. The exact diagonalization,
a numerical method, is available up to near N=20. More-
over, the number of all possible measurement outcomes is
exponentially large with respect to the number of spins,
which causes the sum of an exponential number of terms
dN−2(d: the dimensions of the spin). In Popp’s paper[?],
Monte Carlo method is proposed to overcome the expo-
nential summation, as though statistical error becomes
large at the critical point.

We suggest an alternative scheme to resolve the first
difficulty. Let us suppose that there is a function f of
multi-vectors such that

f( ~X1, ~X2, . . . , ~XN ), (12)

where the elements in the vectors ~Xi are independent
variables. The main idea of the scheme for maximizing

the function f is that we find the maximum value of
the function with respect to the only one variable, oth-
erwise the others are fixed. That is, in the numerical
algorithm, arbitrary numbers are inserted in each vari-
able except one which we want to optimize the function
with respect to. To be more specific, the random vectors
~X2o, · · · , ~XNo being fixed, we maximize the function of
~X1 and find the maximal point ~X1c. Next, the vector
~X1 is upgraded to ~X1c and maximize the function with
respect to the variable ~X2 as the vectors ~X3o, · · · , ~XNo

are still stationary. We consecutively maximize the func-
tion with respect to the one variable ~Xi and upgrade ~Xio

to ~Xic until the integer i approaches to N . This whole
procedure is iterated until the maximum of the function
converges.

The calculation of the localizable entanglement for a
many-body state is implemented based on the above idea.
The function f and the vectors ~Xl correspond to the aver-
aged entanglement and the direction of the measurement
basis on the lth spin, respectively. According to the def-
inition of the localizable entanglement, any measure of
bipartite entanglement can be a proper candidate. We
select the concurrence among these entanglement mea-
sures because its definition becomes concise in the case
of the two-qubit pure states, which helps to simplify and
boost up the calculation of the optimization. Hence, we
confine the conditions of the many-body state to the pure
one for the two-level systems. Also, we choose the local
measurement as the projective one. Then, we simplify
the formula of the averaged concurrence in terms of the
ith vector such that

f( ~Xl) :=

2N−2∑
m=1

√
~XT
l · L

[l]
m · ~Xl, (13)

where the 4-by-4 symmetric matrix L[l]
m con-

tains the elements related to Asi
i , A

sj
j , Asl

l ,

and Āmk

k for all k except i, j, and l and
~XT
l := 1√

2
(1, cosφl sin θl, sinφl sin θl, cos θl). The max-

imization of this function with constraint ~XT
l · ~Xl = 1

and the update of these vectors being iterated by using
the built-in function in Mathematica, the maximum will
finally converge the real number. To test the accuracy
of this algorithm, we simulate the one-dimensional ising
model with the transverse field, since the localizable
entanglement measured by the concurrence is the same
as the two-point correlated function Qxx by Popp’s
paper. The ground-energy state is obtained through the
variational method in matrix product states representa-
tion. The Fig.2 shows the localizable entanglement for
the ground state of the 1D ising model at the critical
point concerning the quantum phase transition and the
error of LC

1,2 compared to the Q1,2
xx is around 10−6.

Still, the summation amount in terms of an expo-
nential number of measurement outcomes has yet to be
surmounted. To overcome this impediment, we are going
to choose more weighted measurement outcomes strate-
gically. That is, the summand in Eq.(??) has diffirenet

values for each measurement outcomes when vecotrs ~Xi



are fixed and we will strategically select some measure-
ment outcomes m̄ that make the largest eigenvalues of

the matrices L[i]
m̄ relatively larger than those of the other

matrices. Consequently, we are going to calculate the
summation Eq.(??) over chosen measurement outcomes
m̄ up to a small number M < dN−2

f( ~Xi) '
M∑

m̄=1

√
~XT
i · L

[i]
m̄ · ~Xi, (14)

which is the main idea that we are going to research
further. After maximizing Eq.(??) for all i ≤ N , we
will compare its maximal value with that of Eq.(??) to
check the efficiency of this approximation for small par-
ticle number (N ≤ 16) and then simulate the localizable
entanglement in the case of a large number of the par-
ticles. Based on this approach, we are going to research
other many-body systems, especially the two-dimensional
systems. That is because more two-dimensional systems
have topological properties than one-dimensional ones.
We anticipate that the localizable entanglement would
catch exotic phase transitions in 2D systems.
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Figure 1: The localizable entanglement LC
i,i+n(the red

points) measured by the concurrence between first spin
and the nth spin: its optimal measurement is in the σx-
basis for 1D ising model and the LE is the same as the
two-point correlated function Qij

xx. At its critical point,
LC
i,i+n has a tendency like the power-law decay n−1/4(the

blue line).
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