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An explanation of the basic characteristics, of the Scilab code we have used here, has 
already been given in [6]. However, this description mostly aimed to familiarize one with this 
optimization method and to help somebody obtain some optimal shapes in an easy way. We 
will try here to give a more thorough explanation of the details of the code, which will allow 
one to interfere to the original files and adjust the code to his needs.

We will analyze the original files that were used in [6] and we will give any further 
detail separately. As already mentioned in [6], three basic files are needed for the code to run. 
The first one, called functions.sci contains all the necessary functions for the algorithm. The 
second one takes its name from the specific shape and structural problem to which it refers to. 
For example, the bridge.sce file contains the geometry information, the boundary conditions 
and an “appropriate” loading for the study of a typical bridge. The last file, optalg.sce, contains 
the optimization algorithm and makes use of the two previous files.

Since the functions.sci, as well as the optalg.sce files use much information described 
in the specific problem’s file, we prefer to start  the description with the last one. We will 
present  just  the  bridge.sce  file,  since  elementary  changes  are  needed  to  consider  another 
problem. For the sake of comprehension, we have split each code in several parts.

The version bridgetop.sce should be used instead of bridge.sce if the user wants to use 
the topological derivative in addition to the shape derivative. In this version, we have added 
some more lines which we explain separately.

i) bridge.sce

Lines 1-25:

///////////////////////////////////////////////////////////////
// Copyright G. Allaire, A. Karrman, October 2009
//
// A Scilab toolbox for 2-d structural optimization
// by the level set method.
//
// Based on the work of G. Allaire, F. Jouve, A.-M. Toader,  
// J. Comp. Phys. Vol 194/1, pp.363-393 (2004). 
////////////////////////////////////////////////////////////////
//
// This file contains the parameters of the following test case:
// bridge 
////////////////////////////////////////////////////////////////
// PARAMETERS
nelx = 40 ;          // number of elements count in x direction
nely = 40 ;          // number of elements count in y direction
xlength = 2. ;       // working domain length
dx = xlength/nelx ;  // x space step size
dy = dx ;            // y space step size
yheight = dy*nely ;  // working domain height
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hx = 5 ;             // number of holes in x direction
hy = 6 ;             // number of holes in y direction 
r = .7 ;             // hole size (between 0 and 1)

In  these first  lines,  some general  characteristics  of  the structure are  given.  We define the 
dimensions of the shape, as well the number of elements to be used, as it is obvious by the 
comments next to the code. Of course, the consideration dy=dx is not obligatory, and one can 
create a finer mesh in one of the two directions.
At the last three lines, an easy choice for creating structures with different initial topologies is 
given,  which  is  based  on  an  initial  consideration  of  the  level  set  function describing  the 
structure given in the file functions.sci. After choosing the number of holes in each direction, 
we can modify their size by varying r. Increasing its value, we get larger holes in the initial 
topology of the shape.
The reader should not forget that our method is strongly dependent on the initial topology, i.e. 
it  is  sensitive to local  minima. Thus, changing the last  three parameters,  one can  observe 
differences in the topologies of the resulting optimal shapes.

Lines 27-29:

eps = .001 ;         // "hole" material density
lagV = 15. ;         // the volume Lagrange multiplier
lagP = 0.0 ;         // the perimeter Lagrange multiplier
e2 = 4*dx^2.;     // coefficient for the regularization in front of the Laplacian

The value eps is used in the “ersatz material” approach that we follow, in order to represent the 
weak material mimicking void. It must have a very low value (eps<<1) to limit its impact, but 
such that we avoid the singularity of the rigidity matrix.
As we have explained earlier, the lagV and lagP represent the weight multipliers of the volume 
and perimeter correspondingly in the multi-objective optimization. The reader should expect 
that decreasing too much the lagV multiplier in compliance minimization should result in a 
great increase in the volume of the structure. It is possible that the whole working domain gets 
covered  by  the  full-material  as  a  result  of  reducing  the  significance  of  the  volume’s 
contribution to the objective function.
The  lagP multiplier is usually used to penalize topologies with many holes and thus create 
simpler topologies in the optimal structures.  This is clearly a result  of penalizing the total 
perimeter, which is very high when the number of connected components of the shape is big.
Both  values of the last two multipliers are heuristic and should by chosen by the user after 
performing some numerical tests on his specific problem.
The coefficient  e2 is used to multiply the Laplacian in the regularization algorithm, so as to 
control the regularization effect.  

Lines 31-34:

nodex = linspace(0,xlength,nelx+1) ;  // x space for nodes
nodey = linspace(0, yheight,nely+1) ; // y space for nodes
FEx = linspace(0,xlength,nelx) ;      // x space for finite elements
FEy = linspace(0, yheight,nely) ;     // y space for finite elements

Here, we just create some vectors containing the coordinates of the points of the grid, which 
can be used in describing a desirable initial shape for the structure to be optimized.
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Lines 36-42:

RIiterinit = 50 ; // number of time steps in the re-initialization of the initial design
RIiter = 5 ; // number of time steps in the re-initialization of further designs
RIfreq = 5 ;  // frequency of re-initialization, i.e. number of time steps in the 
// transport level set equation between two re-initializations
HJiter0 = 30 ; // original number of transport time steps 
entire = 20 ; // total number of optimization iterations
allow = .02 ; // fraction that the objective function can increase

The first three variables of these lines play a significant role in the method we are using, i.e. the 
level-set method. The reason for it is that the level-set function describing the shape of the 
structure can become very steep during the optimization process, especially near the border. 
Since the accuracy of the approximation of several geometrical features of the shape, such as 
the normal vector of the surface or the mean curvature, is crucial for our method, the steepness 
of the level-set function can result in serious errors.
In our code, we start with an initial function that takes the value -1 inside the structure (full-
material) and 1 outside (weak-material). Then we need to construct a signed-distance function 
out of  it.  For this reason,  the number of  steps of the initial  re-initialization should be big 
enough. This generally depends also on the size of our mesh. We would say that the number of 
the  initial  iterations  RIiterinit  should  be  such  that  the  wave  can  transfer  the  necessary 
information  to  all  of  the  structure.  For  the  reader who  wants  to  understand  better  this 
procedure, we address to [8].
As  we  foresaid,  even  if  the  initial  approximation  of  the  signed-distance  function  to  the 
boundary of the shape is satisfying,  numerical experience shows that the level-set function 
goes  far  from  keep  being  a  signed-distance  function to  the  new  boundary  after  some 
optimization iterations.  Therefore, we use  RIfreq to define after how many iterations of the 
Hamilton-Jacobi advection equation the level-set function should be re-initialized and RIiter to 
define the number of steps for the re-initialization. This last number should be such that the re-
initialization is satisfying at least close to the border.
We propose  that  the  reader  performs  some numerical  tests  with  various  values  for  these 
variables and checks their  effectiveness on his problem, by plotting the level-set  function. 
Also, the reader should take great care when his problem demands that he works very close to 
the signed-distance function. Then, we propose that RIfreq=1 and that he uses a big enough 
number of RIiter to have a good approximation, since the re-initialization procedure is not in 
general numerically expensive.
With HJiter0 we choose the step we take in the gradient method. In general, the time step dt 
coming from the CFL condition is very small  in comparison to the optimization step that 
reduces the objective function. Since the advection equation is solved explicitly and so it is 
numerically cheap, we prefer to take much more than one step at each optimization iteration, 
since the latter involves the solution of a linear system with the FEM.
The variable entire just defines the number of iterations for the optimization algorithm, since 
we prefer not to use a stopping criterion, which is not clear in shape optimization.
The variable  allow is considered for numerical  reasons. In  fact,  numerically,  a topological 
change cannot be as small as we want, but instead depends on our grid. Therefore, it is possible 
for example that a topological change indicated by the gradient method is larger that it should 
be to reduce the objective. Thus, we allow such small increases of the objective, expecting that 
after the topological change takes place, the algorithm will search for a better minimum point.
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Lines 44-48:

// FINITE ELEMENT MATRICES
KE = lk(); // the stiffness matrix
K = sparse([],[],[2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)]); // the global stiffness matrix
F = sparse([],[],[2*(nely+1)*(nelx+1),2]); // the matrix of applied forces
U = sparse([],[],[2*(nely+1)*(nelx+1),2]); // the vector displacement matrix

// FINITE DIFFERENCES MATRIX
K1 = sparse([],[],[(nelx+1)*(nely+1),(nelx+1)*(nely+1)])  ;   //We define the matrix of  the 
velocity regularization

Here we just define the matrices for the FEM, as well as for the finite differences used for 
regularizing the advection velocity. The sparse definition in Scilab results in a great gain in 
computational time and memory and the user should use it whenever possible.

Lines 50-64:

// SETTING OF THE ELASTICITY PROBLEM

  // THE FORCE
  // Each row corresponds to a different force.
  // The first two values are the fraction along the x and y axes of the working
  // domain (the origin is the top left corner).  The third value is binary indicating
  // whether the force is horizontal (0) or vertical (1).  The fourth value gives
  // the strength of the force and its direction (negative for leftward or downward
  // forces; positive for rightward or upward forces).
  forceMatrix = [.5 1 1 -1] ;
  
  forceCount = size(forceMatrix,1) ; // We count the number of applied forces
  for force = 1 : forceCount
    F(c(forceMatrix(force,1:3)),force) = forceMatrix(force,4) ;
  end

The way forces are described is very clearly described in the comments above. We suggest that 
the user takes care so that the region where the loads are applied, as well as some part of the 
boundary where we impose Dirichlet conditions is covered with the full-material.

Lines 66-70:

  // FIXED BOUNDARIES WITH DIRICHLET CONDITIONS
  fixeddofs = [c([0 1 1]) c([0 1 0]) c([1 1 1])] ; // We fix x and y degrees of freedoms for 
nodes
  
  alldofs     = [1:2*(nely+1)*(nelx+1)];
  freedofs    = setdiff(alldofs,fixeddofs);

In  this part  we define the parts of  the boundary where the structure is clamped (Dirichlet 
conditions). We do this with the use of the c function. The first and the second arguments in 
the bracket give the fractions along the x and y axes that correspond to the location of the point 
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to  clamp.  The  third  argument  takes  the  value  0  or  1,  depending  on  whether  we  fix  the 
horizontal  or the vertical  degree of freedom. So, in the lines above the first  call  of  the  c 
function  fixes  the  vertical  displacement  of  the  down-left  node,  the  second  call  fixes  the 
horizontal displacement of the same node and the third call fixes the vertical displacement of 
the down-right node of the working domain.
At this point, we prefer to analyze a little bit more the definition of the axes in our code. The 
user shall be very careful with it when trying to interfere to the code.
The location of the forces, the location of the points where we impose boundary conditions and 
other  features that are directly related to the coordinates of the nodes, follow the way these 
coordinates  are defined.  So,  since the coordinates of  the grid’s  nodes were defined in  an 
increasing  order  through  the  matrices  nodex,  nodey (lines  31-32),  the  axes  for  all  these 
features should be the ones shown in Figure 1. The reader should not be confused with features 
defined in another sense, such as for example the direction of the forces, which is different than 
the positive direction defined in Figure 1.

x

y

(0,0) (dx,0) (2*dx,0) (nelx*dx,0)

(0,dy)

(0,2*dy)

(0,nely*dy) (nelx*dx,nely*dy)

Figure 1: Definition of axes for the node coordinates.

The numbering of the degrees of freedom is presented in Figure 2.

Figure 2: Numbering of degrees of freedom ([6]).

5



Lines 72-77:

  // PASSIVE ELEMENTS
  // For this part we can make sure that certain areas in the working domain 
  // are either always part of the structure or always not part of the structure.
  function FEthetaOut = passive(FEthetaIn)
    FEthetaOut = FEthetaIn ;
  endfunction

In these lines we use a function that keeps some elements of the working domain with the full-
material’s  density.  The reason is that  in some problems this is  physically imposed, as for 
example the pavement of the bridge should always exist, in any configuration of a bridge’s 
shape!

Lines 80-82:

// INITIALIZATION
phi0 = mesh0(hx, hy,r) ;
phi0(($-floor(.08*nely)):$,:) = -.1 ;

Finally,  in  these  lines  we call  the  mesh0 function  that  gives  the initial  function 
describing the shape, under the characteristics we have attributed to it.

ii) bridgetop.sce

Lines added:

allow_top = .1 ; // fraction that the objective function can increase in topological derivation
ntop = 6 ; //number of advection steps between two topological gradient steps
percentage_in = 0.05; // percentage of the current volume to be removed in the first topological
                                   // gradient step 
percentage = 0.02; // percentage of the current volume to be removed in each topological
                              // gradient step      

A thorough explanation for the choice of these parameters can be found in [13]. We will also 
give a short description here for the sake of completeness.
We have defined a different allowance for the topological sensitivity step, named allow_top, as 
suggested in [13], which is significantly higher than the one used in the shape sensitivity step. 
This  is  mainly  due  to  the  inability  to  take  numerically  a  “small  step”  in  the  topological 
derivative algorithm, that is to create very small holes. To create a hole we have to change the 
sign of at least one node of the mesh and therefore the step cannot be arbitrarily small, unless 
the mesh is very dense.
Then, since we have decided to couple the shape and topological derivatives, we have to choose 
a frequency for the execution of the topological step, called ntop.
The percentage parameter defines the percentage of the current volume to be removed in every 
topological gradient step. In the same sense, we have used the parameter percentage_in just for 
the first step. It is sometimes useful to set this value bigger that the one of percentage when we 
start  with a full-domain initialization (no initial guess of the shape).  This happens because 
numerically it may be difficult to remove a small volume when the topological gradient at the 
nodes takes values that are very close between them.

6



iii) functions.sci

We continue with the file containing the functions that we use in the optimization algorithm. 
We have chosen not to give a detailed description of all of them, since they are described in a 
very satisfying way in the comments, but also because the user has to use them as “black box” 
and it is not recommended to interfere into them. For this reason, we avoid describing the FE 
and FEtop function for the finite element analysis and the lk function for the forming of the 
stiffness matrix,  which in fact  are  a translation in Scilab of Ole Sigmund’s  code in  [11]. 
Moreover, we avoid detailing the c function, which as we have already seen fixes the degrees 
of freedom of grid points and we give a short description of the FEdensity function, without 
presenting the code, which will help the reader understand why some regions of the domain 
appear in different grayscale than others.

FEdensity

The concept under which we attribute a density value to each element is the following: First, 
we check the values of the level-set function at the four grid points forming an element. If all 
of the values are negative, that means that all the nodes are contained in the structure and so the 
full-material density is given to the element. Accordingly, if all the values are positive, that 
means that no point is included, so we have to give the weak-material’s density to the element. 
If nothing of these happens, then we have to give some intermediate value of density. So, we 
split  the  rectangular  element  into  four  triangles and we give  to  the common point  of  the 
triangles, as value of the level-set function, the average of the values of the four points. Then, 
we examine each triangle separately under the some logic. The final element’s density is the 
average of the contribution of each triangle.

mesh0

// INITIALIZE THE STRUCTURE
// This function will just distribute holes
// uniformly throughout our mesh.  hx is the number
// of horizontal holes while hy is number of vertical
// holes.  r is a variable that lets you change the
// size of the holes;  a default size would be .5; .1
// would give you very small holes and .9 would give
// you very large holes.  (0 < r < 1)
function [phi0] = mesh0(hx,hy,r)
  if isdef('ntop') then
   phi0 = -ones(nely+1,nelx+1) ; // Full-domain initialisation
  else
   phi0 = zeros(nely+1,nelx+1) ; // First create an empty matrix
   //In order to make our holes, we use a 3d function
   //that maps x and y coordinates to z = cos(x)*cos(y)
   //and then we flatten holes to .1 and the structure
   //part to -.1
   phi0 = -cos((hy+1)*(nodey*%pi)/yheight)'*cos((hx+1)*(nodex*%pi)/xlength)+r-1 ;
   phi0 = .2*ceil(max(phi0,0))-.1 ;
  end
endfunction
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The way the initialization takes place is described in the comments in complete detail. We 
would like to mention that the level-set function is in fact a matrix, and it is formed in the same 
sense that the grid is formed, i.e. it follows the numbering of the nodex and nodey vectors. So, 
the coordinate system for the level-set function is shown in Figure 3.

x

y

(0,0) (1,0) (2,0)

(0,1)

(0,2)

Figure 3: Coordinate system for the level-set function.

Thus, if the user wants to create his own initialization, then he should replace the line:
“phi0 = -cos((hy+1)*(nodey*%pi)/yheight)'*cos((hx+1)*(nodex*%pi)/xlength)+r-1  ;”  by his 
own representation. Below, we give some examples for a better understanding of what we have 
mentioned.

Example 1:   Circular hole with center (x,y) = (1,1) and radius r = 0.4.  
for i = 1:nely+1
      for j = 1:nelx+1
            phi0(i,j)  =  -(nodex(j)-1)^2-(nodey(i)-
1)^2+0.4^2 ;
      end
end

Figure 4: Circular hole with equation: ( ) ( )2 2 21 1 0.4x y− + − = .
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Example 2  : Circular hole with center (x,y) = (1.5,0.5) and radius r = 0.2.  

for i = 1:nely+1
   for j = 1:nelx+1
     phi0(i,j)  =  -(nodex(j)-1.5)^2-(nodey(i)-
0.5)^2+0.2^2 ;
   end
end

Figure 5: Circular 
hole with equation: 

( ) ( )2 2 21.5 0.5 0.2x y− + − = .

shift2n

// SPACE SHIFT FUNCTION
// Using Neumann, or Neumann for the directional gradient boundary conditions,
// we just shift
// our matrix over one index in a certain direction
// in order to take derivatives. 
function phishift = shift2n(direction,phi,conditions)
  //  SHIFTS LEVEL SET FUNCTION WITH NEUMANN OR NEUMANN FOR THE 
GRADIENT CONDITIONS
  select direction
     case 'w' then          // SHIFT WEST
             [m,n] = size(phi) ;
             phishift(1:m,1:n-1) = phi(1:m,2:n) ;
             select conditions
               case 'n' then               
                    phishift(1:m,n) = phi(1:m,n) ;     // NEUMANN CONDITIONS
               case 'ng' then
                    phishift(1:m,n) = 2*phi(1:m,n)-phi(1:m,n-1) ; // NEUMANN FOR THE 
DIRECTIONAL GRADIENT CONDITIONS
             end                
     case 'e' then          // SHIFT EAST
             [m,n] = size(phi) ;
             phishift(1:m,2:n) = phi(1:m,1:n-1) ;

9



             select conditions
               case 'n' then
                    phishift(1:m,1) = phi(1:m,1) ;     // NEUMANN CONDITIONS
               case 'ng' then
                    phishift(1:m,1) = 2*phi(1:m,1)-phi(1:m,2) ;   // NEUMANN FOR THE 
DIRECTIONAL GRADIENT CONDITIONS
             end
     case 'n' then          // SHIFT NORTH
             [m,n] = size(phi) ;
             phishift(1:m-1,1:n) = phi(2:m,1:n) ;
             select conditions
               case 'n' then
                    phishift(m,1:n) = phi(m,1:n) ;      // NEUMANN CONDITIONS
               case 'ng' then
                    phishift(m,1:n) = 2*phi(m,1:n)-phi(m-1,1:n) ;  // NEUMANN FOR THE 
DIRECTIONAL GRADIENT CONDITIONS
             end  
     case 's' then          // SHIFT SOUTH
             [m,n] = size(phi) ;
             phishift(2:m,1:n) = phi(1:m-1,1:n) ;
             select conditions
               case 'n' then
                 phishift(1,1:n) = phi(1,1:n) ;      // NEUMANN CONDITIONS
               case 'ng' then                
                 phishift(1,1:n) = 2*phi(1,1:n)-phi(2,1:n) ;       // NEUMANN FOR THE 
DIRECTIONAL GRADIENT CONDITIONS
             end
     else 
             error('SHIFT N,S,E, OR W?')
  end
endfunction

We suggest that the user takes great attention to this function, especially the one that wants to 
interfere to the codes or  create his own ones. This function is  indeed used to form finite 
differences to any direction, so that after we can easily create forward or backward schemes for 
approximating derivatives.  We need to mention that the numbering of the arrays follows 
the coordinate system described earlier, considering the upper-left corner as the origin.
Considering Neumann conditions for the level-set function, all we have to do is to define the 
direction towards which we want to move the discrete values of the level-set function and keep 
the same values for the “void” part.
In the following Figures, we try to explain in detail the numbering of arrays and the procedure 
of  moving the values of  phi  (level-set  function)  to the west  and we give the form of the 
translated function. It is easy then to understand that the directions west, east, north and south 
correspond to the directions of the real world and have no relation to any other coordinate 
system defined in the code.
Another possible choice for the boundary conditions is to take Neumann conditions for the 
directional derivative. This seems to be a more natural choice, since it alleviates the artificial 
effect on boundaries that are perpendicular to the boundary of the working domain.
In this work we have chosen to use Neumann conditions for the reinitialization algorithm and 
Neumann for the directional gradient for all the rest.
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Figure 6: Numbering of arrays.

Figure 7: Moving the values of the level-set function to the west.

Figure 8: Moved to the west level-set function.
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perimeter

// THE PERIMETER
// In order to roughly calculate the perimeter
// we find the norm of the gradient of the sign
// of phi and integrate it, then divide by 2:
function totperim = perimeter(phi)
  // To smooth sign(phi):
  epsperim = min(dx,dy)/20 ;
  sx = phi./sqrt(phi.^2+epsperim^2) ;
    
  sxn = shift2n('n',sx,'ng') ;
  sxs = shift2n('s',sx,'ng') ;
  sxe = shift2n('e',sx,'ng') ;
  sxw = shift2n('w',sx,'ng') ;
  
  // We now calculate d(phi)/dx and d(phi)/dy:
  dsxx = (sxw-sxe)/(2*dx) ;
  dsxy = (sxn-sxs)/(2*dy) ;
  
  dV = dx*dy ;
  
  // And then integrate:
  totperim = .5*sum(sqrt(dsxx.^2+dsxy.^2))*dV ;
endfunction

For  the  calculation  of  the  perimeter,  we  use  the  following  approximation: 

D

perimeter ds dxδ∂Ω
∂Ω

= =∫ ∫ , where  ( )( )1
sgn

2
xδ ψ∂Ω = ∇  is the dirac mass function 

of the boundary ∂Ω .

We use an approximation of the sign function: ( )( ) ( )
( ) ( )2 2

sgn
x

x
x epsperim

ψ
ψ

ψ
=

+
, 

where the value of epsperim=min(dx,dy)/20 is chosen so as to spread the jump in the 

sign function over 2 cells in average. In the code, we have called  ( )( )sgn x sxψ = . 

Then, we shift  this function to all  directions,  and we form the central  differences 
approximations of the derivatives of sx in the direction x (dsxx) and y (dsxy). So, we 

have formed the components of  ( )( )sgn xψ∇  and the perimeter is easily calculated 

by the approximation we gave above.
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curv

// THE CURVATURE
// The shape gradient of the perimeter is the  
// mean curvature which we compute by 
// div(grad(phi)/|grad(phi)|)
// where phi is the level set function. 
function H = curv(phi)
  // When finding the normal vector, we need
  // to divide by the norm of the gradient of phi;
  // we use this small value to make sure that
  // the gradient of phi never goes to 0:
  epscurv = min(dx,dy)/20 ;
  
  // Here are the first derivatives for finding
  // the gradient of phi:
  phin = shift2n('n',phi,'ng') ;
  phis = shift2n('s',phi,'ng') ;
  phie = shift2n('e',phi,'ng') ;
  phiw = shift2n('w',phi,'ng') ;

  dphix = (phiw-phie)/(2*dx) ;
  dphiy = (phin-phis)/(2*dy) ;
  
  //  Here is |grad(phi)| and then the x and y
  // components of the normal vector field:
  mag = sqrt(dphix.^2+dphiy.^2+epscurv^2) ;
  nx = dphix./mag ; ny = dphiy./mag ;
  
  // Now to find the divergence, just take the 
  // partials with repsect to x and y of the
  // x and y components of our normal vector field
  // (respectively) and then add these together
  // to get our end mean curvature, which is a 
  // function across our working domain.
  nxe = shift2n('e',nx,'ng') ;
  nxw = shift2n('w',nx,'ng') ;
  
  nyn = shift2n('n',ny,'ng') ;
  nys = shift2n('s',ny,'ng') ;
  
  divnx = (nxw-nxe)/(2*dx) ;
  divny = (nyn-nys)/(2*dy) ;
    
  H = divnx+divny ;
endfunction
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Here we compute the  mean curvature  H,  which in  2-d is  the same with  the min or  max 

curvature. It is compute as: H div n
→ =  
 

, where n
→

 is the unit vector normal to the boundary 

∂Ω . Since n
ψ
ψ

→ ∇=
∇  in terms of the level-set function, we first try to form the ψ∇ . We shift 

the level-set function to every direction and we compute the central difference approximations 
of the derivatives in each direction. The user has to be careful with the fact that forming the 
normal vector requires that the differences are taken in the direction of the axes in Figure 3, 
else it is possible to form the tangent vector or the ψ−∇  vector. The small parameter added to 
the magnitude certifies that we do not divide with zero.
Finally, we follow exactly the same approach with the components of the normal vector to 
form its divergence.

volume

// THE VOLUME OF THE STRUCTURE
// To find the total volume of our structure, we just
// integrate the density*dV:
function totvol = volume(FEtheta)
  dV = dx*dy ;
  totvol = sum(FEtheta)*dV ;
endfunction

Since we have assigned a value of density to each element, the total volume, which is given by 

( )
D

V x dxρ= ∫ , is nothing else but the sum of the density values multiplied by the element’s 

volume.

compliance

// COMPUTE THE COMPLIANCE 
// The compliance is the main part of our objective function. 
// It is the integral of the elastic energy density, equal to  
// the total work done by the applied forces.
function totcomp = compliance(FEAeueu)
  totcomp = sum(FEAeueu) ;
endfunction

The compliance is the work done by the loads. We know that this equals the work of 

the internal  forces:  ( ) ( )compliance = :
N D

g uds Ae u e u dx
Γ

⋅ =∫ ∫ .  So, we just  have to 

sum the values of the elastic energy density.

regularize

This function is used to regularize the velocity field for the advection of the level-set 
function, by substituting the L2 with the H1 inner product for the derivative. The user 
is  not  supposed  to  interfere  with  this  function,  but  he  can  control  the  extend of 
regularization via the e2 parameter given in the specific problem's file.
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solvelvlset

This function is used for the advection of the level-set function under a velocity normal to the 
boundary  computed  via  the  shape sensitivity  method [7,12].  The user  is  not  supposed to 
interfere into this function and the same yields for the functions minmod and g that are used in 
it.
We do not give here a description of the code used, since the whole theory behind it can be 
found in detail in [10] and in the references contained there. Also, the function mesh00 which 
is used for the re-initialization, is exactly of the same type with the advection equation and 
follows the same sense.
In  general,  we would say that  the  algorithm uses  upwind  schemes  for  approximating the 
advection part of the equation and central differences for the diffusive part. The logic is the 
same as with hyperbolic conservation laws and is summarized in the fact that “the numerical 
domain of dependence should contain the mathematical domain of dependence” ([10]). In other 
words,  we have to check in which direction the wave moves to and advect  the numerical 
information in the same direction. As for the diffusive part, it is natural that the information 
should be transmitted to both directions.

solvelvlset_top

This function is used for the update of the level-set function during a topological gradient step. 
The choice we have made is in accordance with [13], that is we remove a certain percentage of 
the volume of the current shape. The areas removed are those where the topological gradient 
takes its lowest values.
So, what we try in fact to do in this function is to determine which points should change sign 
so that the target volume is removed. This is done through a dichotomy algorithm. The user 
should note that the finer the mesh, the better this algorithm is expected to perform, since a 
finer  mesh  enables  for  the  creation  of  small  holes  and  a  lower  value  of  the  parameter 
percentage can be chosen.
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iii) optalg.sce

Lines 21-44:

// Check if the variable 'ntop' for topological gradient is defined.
if isdef('ntop') then
  ntop = ntop;
else
  ntop = 0;
end
// REINITIALIZATION
phi00 = mesh00(phi0,RIiterinit) ;

// Set phi to the reinitialized state:
phi = phi00 ;

// Plot the initialization:
scf(0);
clf()
xset('colormap',graycolormap(10))
title('Initialization')
grayplot(FEx,-FEy,-passive(FEdensity(phi))',axesflag = 2) ;

filename='Initialization';
xs2jpg(0,filename);

printf('\nOptimization started\n') ;
stacksize('max') ; // We want to make sure that we have enough memory available

We start our optimization algorithm by re-initializing the initial level-set function phi0, which 
was defined at bridge.sce, so that it becomes the signed-distance function to the zero level-set 
of phi0. Then, we set the level-set function phi equal to the re-initialized one.
After, we just plot the density of the initial shape in the graph with the title “Initialization” and 
we export the plot to a jpg file.
We would like here to mention something that can set a lot of questions to the user. We need to 
understand that we do not plot the structure itself, but instead the density of the material at the 
elements, which comes from interpolation procedure described in functions.sci. This means, 
that the boundary of the shape can be very smooth, but in the plot always the grayscaled image 
will appear.

Lines 46-77:

// FE ANALYSIS

// Define the elements' densities based on phi.
FEtheta = FEdensity(phi,eps) ;   
// Set unchanging densities depending on the 'passive' function.
// This 'passive' zone is defined in the parameter file of the 
// considered test case. 
FEtheta = passive(FEtheta) ;  
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if ntop==0 then
  // shape derivative
  // The output of the finite element analysis is the elastic energy density:
  // lvlAeueu is that field defined on nodes (it is used as the velocity in
  // transport level set equation), FEAeueu is the same field defined on 
  // elements (it is used to compute the compliance).
  [lvlAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U) ; 
else
  [FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K,F,U);
  // topological derivative
  // In this case, FEAeueu denotes the topological gradient,
  // while FEAeueucomp contains the energy density defined on elements.
end
// Define the velocity field:
if ntop==0 then
  // shape gradient
  V = lvlAeueu/(dx*dy) - lagV;
  // regularization of the velocity field
  V = regularize(phi,V,e2,K1,lagP);
else
  // topological gradient
  V = FEAeueu - lagV;
end

This part is well described in the comments above. We use the FEdensity function to assign a 
density value to each element, according to the value of the level-set function at its nodes. 
Then we update these values by keeping steady some part of it via the passive function and 
finally we perform the FE analysis. In the case that  ntop=0, that is if we use only the shape 
sensitivity method, having obtained the values of the energy density at each node, we define 
the values of the vector field, normal to the boundary, with which we will advect the level-set 
function  and finally  we regularize  the  advection  velocity.  In  case  we  use the  topological 
sensitivity, we have chosen to perform a topological gradient step at the first iteration, usually 
because in such a case we start with a full-domain initialization.

Lines 80-90:

// CALCULATE THE OBJECTIVE FUNCTION
if ntop==0 then
  totcomp = compliance(FEAeueu);
else
  totcomp = compliance(FEAeueucomp) ;
end
totvol = volume(FEtheta) ;
objective = lagV*totvol+lagP*perimeter(phi)+totcomp ;

// We track the objective function after each optimization iteration using 'objectivePlot'
objectivePlot = objective ;
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In these lines we compute the objective function of our multi-objective optimization problem 
and save its value in the vector objectivePlot, which will be used for plotting the convergence 
history.

Lines 93-115:

// OPTIMIZATION LOOP

i = 1 ; // The current optimization iteration 
HJa = 1 ; // The level set solution "attempt"
HJiter  = HJiter0 ;  //  The initial  number of  time steps for solving the transport  level  set 
equation
e3 = 1;  // Coefficient used to reduce, if neccessary, the advection time step below the 
// limit imposed by the cfl condition
allow_adv = allow;

while i<=entire  
  
  if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
    // Test shape using the topological derivative:
    if (i==1) then 
      phiTest = solvelvlset_top(phi,V,percentage_in,FEtheta);
    else     
      phiTest = solvelvlset_top(phi,V,percentage,FEtheta);
    end
  else
    // Solve the transport level set equation using the velocity V:
    dt = 0.5*e3*min(dx,dy)/max(abs(V)) ;
    phiTest = solvelvlset(phi,V,dt,HJiter,lagP) ;
  end

It is time to start the optimization algorithm. Our stopping criterion has to do with the total 
number of optimization iterations, which is just the simplest consideration. More sophisticated 
criteria can of course be imposed.
In case the gradient comes from a shape sensitivity analysis, the time step dt is defined under a 
CFL condition described in [22], while other considerations can also be made.
We update the level-set function  phi that describes our current shape to get a new level-set 
function  phiTest. The reason for this notation is that we still don’t know if this new shape 
described by phiTest has led to a reduction of the objective and therefore we have to check this 
before adopting this new shape.

Lines 117-145:

  // FE ANALYSIS 
  // Define material density based on phi
  FEthetaTest = FEdensity(phiTest,eps) ; 
  // Set passive element densities to 'eps'
  FEthetaTest = passive(FEthetaTest) ;
  // Perform the finite element analysis and compute 
  // the elastic energy density:
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  if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
    [FEAeueuTest,FEAeueucompTest] = FEtop(FEthetaTest,KE,K,F,U);
  else
    [lvlAeueuTest,FEAeueuTest] = FE(FEthetaTest,KE,K,F,U);
  end

  // CALCULATE THE OBJECTIVE FUNCTION
  if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
    totcompTest = compliance(FEAeueucompTest) ;
  else
    totcompTest = compliance(FEAeueuTest) ;
  end
  totvolTest = volume(FEthetaTest) ;
  objectiveTest = lagV*totvolTest+lagP*perimeter(phiTest)+totcompTest ;
  // Plot the test shape: 
  scf(0) 
  clf()
  xset('colormap',graycolormap(10)) ;
  title('Test shape')
  grayplot(FEx,-FEy,-FEthetaTest',axesflag = 2) ;
  printf('\nIteration %d of %d,  HJ attempt %d, HJiter %d, objective = %f, objectiveTest = 
%f, volume = %f\n',...
    i,entire,HJa,HJiter,objective,objectiveTest,totvolTest) ;

We perform a finite element analysis and compute energy densities, depending on whether we 
have done a shape or a topological sensitivity analysis. We use these results to calculate the 
objective function of the test shape. 

Lines 147-156:

  // OBJECTIVE FUNCTION MUST DECREASE (up to some tolerance 'allow')
  if modulo(i,ntop)==0 | (i==1 & ntop~=0) then
    allow = allow_top;
  else
    allow = allow_adv;
  end 
  if i>=(entire*3/4) then
    allow = 0;  // After some iterations, we switch-off the 'allow' parameter,
                // in order to converge.
    ntop = 0;
  end

As we have said before, we allow the objective function to increase significantly more in the 
case of topological sensitivity, due to numerical difficulties to create “small” holes.
Moreover, after some iterations, expecting that the major topological changes have already 
happened, we switch off this variable and the topological gradient steps, else it is natural to 
observe oscillations of the shape, or even an increase of the objective function over many 
iterations.
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Lines 147-156:

  if objectiveTest <= objective*(1+allow) then
    // The current design is OK: move on to the next iteration, 
    // using the test versions as our new variables to work with
    i=i+1; // Move on to the next optimization iteration
    phi = phiTest ;
    FEtheta = FEthetaTest ;
    objective = objectiveTest ;
    if modulo(i,ntop)==0 | modulo(i-1,ntop)==0 | i==2 then
      if modulo(i,ntop)==0 then
        [FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K,F,U);
        V = FEAeueu - lagV;
      else
        [lvlAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U);
        V = lvlAeueu/(dx*dy) - lagV;
        V = regularize(phi,V,e2,K1,lagP);
      end
    else
       lvlAeueu = lvlAeueuTest ;
       FEAeueu =FEAeueuTest ;
       V = lvlAeueu/(dx*dy) - lagV;
       V = regularize(phi,V,e2,K1,lagP);
     end
    HJiter = min(10,max(floor(HJiter*1.1),HJiter+1)) ;
    objectivePlot($+1) = objective ;
    // Plot the new shape:  
    clf()
    xset('colormap',graycolormap(10)) ;
    title('Evolving shape')
    grayplot(FEx,-FEy,-FEtheta',axesflag = 2) ;

    HJa = 1 ; // Reset the lvl-set "attempt" variable
    e3 = 1;

In case the objective function has decreased, we accept the test shape and we need to calculate 
the new velocity.
There are three cases: Either in the next step we will perform a topological sensitivity step 
(  modulo(i,ntop)==0),  or  the  last  step  was  the  first  step  or  a  topological  sensitivity  step 
( modulo(i-1,ntop)==0) and therefore we need to compute the velocity for the shape sensitivity 
step, or last we both had and will continue with a shape sensitivity step, therefore we have 
already all necessary information. 
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Lines 194-216:

  else
    i=i+1;
    if modulo(i,ntop)==0 | modulo(i-1,ntop)==0 then
      if modulo(i,ntop)==0 then
        [FEAeueu,FEAeueucomp] = FEtop(FEtheta,KE,K,F,U);
        V = FEAeueu - lagV;
      else 
        [lvlAeueu,FEAeueu] = FE(FEtheta,KE,K,F,U);
        V = lvlAeueu/(dx*dy) - lagV;
        V = regularize(phi,V,e2,K1,lagP);
      end
    else
      // The current design is bad: try again, this time with fewer 
      // time steps for the transport level set equation
      HJiter = floor(HJiter/2) ;
      if HJiter == 0 then
         HJiter = 1 ;
         e3 = e3/2;
      end    
      HJa = HJa + 1 ; // Increment the lvl-set "attempt" variable
    end
  end
end

In  case  the  objective  function  has  not  decreased,  we  again  examine  several  cases.  If  a 
topological gradient step is to follow, we compute the corresponding gradient. We do same 
thing if we pass from a topological gradient to a shape gradient step. Finally, in case the last 
and the current  iteration are both using the shape sensitivity  analysis,  the rejection of  the 
objective function means either that we have moved too much or that we have been lying on a 
local minimum. Therefore, we just reduce the advection step.

Lines 218-234:

// Plot the final shape:  
clf()
xset('colormap',graycolormap(10)) ;
title('Final shape')
grayplot(FEx,-FEy,-FEtheta',axesflag = 2) ;
scf(0);
filename='Finaldesign';
xs2jpg(0,filename);
printf('\n Export of Final Design\n') ;
// Plot the objective function:
clf()
xtitle('Convergence history','Iteration','Objective function')
plot((1:length(objectivePlot)) - 1,objectivePlot) ;
printf('\nOptimization finished\n') ;

Finally, we plot the final design and the convergence history.
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Exact Volume Constraint

In case one wants to keep the total volume constant during the optimization process, then one 
needs to update the Lagrange multiplier for the volume at each step. The user should remember 
that lagV does not appear in the objective anymore, but it does in the velocity for the advection 
of the level-set.
In the case when the volume has reduced, one should decrease lagV, while if the volume has 
increased, one should increase lagV. Unfortunately, it is possible that in the beginning of the 
algorithm this  procedure  is  very  costly.  The reason is  that  for  each  increase of  lagV  the 
algorithm solves the advection equation and since the initial choice of lagV is arbitrary in 
general,  this  can  be  repeated  too  many  times  until  finding  the  proper  value  of  lagV. 
Fortunately,  this is not the case close to convergence, where almost all topological changes 
have taken place. Moreover, we suggest that the user chooses a fine enough mesh for such an 
algorithm, since a coarse mesh makes small topological changes become significant. Even with 
a fine mesh, we needed many iterations for the disconnected parts to completely disappear.
In  the  following,  we  give  an  explanation  of  the  function  we  have  used  for  the  volume 
constraint.

// UPDATE OF THE LAGRANGE MULTIPLIER FOR THE VOLUME
// we update lagV so that the volume remains stable in each iteration
  
function [phiTest,lagVTest,VTest,dtTest] = lagVupdate(phi,V,dt,HJiter,totvolinit,lagV,eps)
  
 phiTest = solvelvlset(phi,V,dt,HJiter) ; 
 FEthetaTest = FEdensity(phiTest,eps) ; 
 FEthetaTest = passive(FEthetaTest) ;
 totvolTest = volume(FEthetaTest) ;
 lagVTest = lagV;
 energy = V+lagV;
 totvolTest1=totvolTest;

We start by advecting the current level-set function phi, under the current lagV and so under 
the current V and dt. We name the advected level-set function “phiTest”.  We compute the 
volume of  the new shape,  “totvolTest”,  and we name it  “totvolTest1”.  The update of  the 
velocity V will depend just on the lagV. So, for simplifying the computations, since the energy 
term of V remains constant, we prefer to separate it and name it “energy”.

if totvolTest1<totvolinit then   
   while totvolTest<totvolinit     
     lagVmax = lagVTest;
     lagVTest = lagVTest-0.1;
     VTest = energy-lagVTest;
     dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ; 
     phiTest = solvelvlset(phi,VTest,dtTest,HJiter) ;
     FEthetaTest = FEdensity(phiTest,eps) ; 
     FEthetaTest = passive(FEthetaTest) ;
     totvolTest = volume(FEthetaTest) ;
     lagVmin = lagVTest;     
   end   
 end

2



If the volume has decreased, then we have to decrease lagV. So, every value that we will try 
will be lower than the one we have used and therefore we name the current value “lagVmax”. 
Then we decrease it by subtracting an arbitrary value and compute the new velocity “VTest”, 
which of course results in a new time step “dtTest”. We solve the advection equation under the 
new quantities and compute the volume. We name this new value of lagV as “lagVmin”.
We continue this procedure until we have found a value of lagVmin such that the volume has 
exceeded the initial one. This means that now, we have two values “lagVmax” and “lagVmin” 
and the desired value of lagV, i.e. the one that keeps the volume constant, lies between them.

if totvolTest1>totvolinit then 
   while totvolTest>totvolinit     
     lagVmin = lagVTest;
     lagVTest = lagVTest+0.1;
     VTest = energy-lagVTest;
     dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ; 
     phiTest = solvelvlset(phi,VTest,dtTest,HJiter) ;
     FEthetaTest = FEdensity(phiTest,eps) ; 
     FEthetaTest = passive(FEthetaTest) ;
     totvolTest = volume(FEthetaTest) ;
     lagVmax = lagVTest;     
   end   
 end

We follow exactly the same logic in case the volume has increased to obtain the two values 
“lagVmax” and “lagVmin”.

if totvolTest1 == totvolinit then  
   lagVmin = lagVTest;
   lagVmax = lagVTest;   
end

Obviously, if the volume has not changed, the two values “lagVmin” and “lagVmax” coincide.

//Dichotomy on the value of the Lagrange multiplier
    while ((abs(1.-totvolTest/totvolinit))>.01)  
      lagVTest = (lagVmin+lagVmax)/2. ;
      VTest = energy-lagVTest;
      dtTest = 0.5*min(dx,dy)/max(abs(VTest)) ; 
      phiTest = solvelvlset(phi,VTest,dtTest,HJiter) ;
      FEthetaTest = FEdensity(phiTest,eps) ; 
      FEthetaTest = passive(FEthetaTest) ;
      totvolTest = volume(FEthetaTest) ;      
      if totvolTest < totvolinit then
        lagVmax = lagVTest;
      end        
      if totvolTest > totvolinit then
        lagVmin = lagVTest;
      end     
    end
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Finally, we try to choose the value for lagV does not change the volume more than 1%. Of 
course, this value is arbitrary, but we suggest that one does not pick a too small value, since 
numerical problems will probably make the algorithm too slow. So, we take the average value 
of “lagVmax” and “lagVmin” and we check its impact. If the volume is lower than we desire, 
we set “lagVmax” equal to this average value and if the opposite happens, we do the same with 
“lagVmin”. We continue until our criterion is satisfied.

phiTest = phiTest ;
lagVTest = lagVTest;
VTest = energy-lagVTest ;
dtTest = dtTest ;
    
endfunction

Having determined the appropriate value of lagV and the corresponding level-set function, 
velocity and time step, we set them as the output of the function and continue the optimization 
algorithm.
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